Understanding Flood Dynamics in East African Wetlands.

Insights from Observational and Model Comparisons.

13.08.25

Motivation

- The Sudd is the largest wetland in Africa.
- Our domain has an area of ≈ 85,000 Km²

 Since 2019, there's been a large increase in flood extent in the Sudd.

 This has been correlated with an increase in regional methane emissions. (Andy Hardy et al, 2023)

Objectives

Compare model output with satellite observations:

 CaMa-Flood (Yamazaki et al 2013,2014) is a river routing and overbank inundation model

 Observed inundation is derived from the difference between land surface temperature and air temperature.

Assess model sensitivity to different

metrics & parameters:

- SPAEF & SPAH4
- KGE
- Root Mean Squared Error(RMSE)
- Fractional Skills Score & other binary metrics

Baseline Model Performance

High Bias

Low Yearly Variability

KGE Metric

KGE =
$$1 - \sqrt{(\alpha - 1)^2 + (\beta - 1)^2 + (\gamma - 1)^2}$$

$$\alpha$$
 = ρ (obs,sim), $\beta = \frac{\sigma_{sim}}{\sigma_{obs}}$, $\gamma = \frac{\mu_{sim}}{\mu_{obs}}$

Compares time series data – produces spatial output.

SPAEF Metric

SPAEF =
$$1 - \sqrt{(\alpha - 1)^2 + (\beta - 1)^2 + (\gamma - 1)^2}$$

$$\alpha$$
 = ρ (obs,sim), $\beta = \frac{\sigma_{sim}}{\mu_{sim}} \div \frac{\sigma_{obs}}{\mu_{obs}}$, $\gamma = histogram\ overlap$

Compares spatial data –

produces a timeseries.

Changing Channel Depth/Width

Changing Bifurcation Parameters

- In wetlands, flow is not constrained to the main channel.
- We can represent this with bifurcations
 - manually adding connections in.
- We've changed the width of one
 - connection here.

Difference in inundation compared to baseline model

Metric Scores

Difference from baseline KGE

Summary

- Different metrics reveal different information.
- The model shows higher sensitivity to bifurcation parameters than to the Nile depth/width.
- The Sudd is a complicated system it will take time to optimise the model.
- I recommend that future work looks at sensitivity within specific areas of the domain.

Bifurcation KGE Components

Comparing Different Observations.

TropWet = 7 categories – Based on optical data
 from LandSat.

Land Surface Temperature taken from MODIS
 Aqua.

So far, we have been using land surface

temperature - air temperature <= -2k.

Comparison between (inundated water + open water + inundated vegetation) and Land surface Temperature

Increasing Land Surface Temperature Threshold.

Land Surface Temp - Air Temp <= -4K

Correlation between the TropWet and the new threshold.

Total KGE/SPAEF

Difference in B3 KGE Components (1 Channel)

Ratio of S.D.

Bias

