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• Near Natural Catchments 

• River Flow Records 

• Focus is on High Flows and 
Extremes 

• Understanding the driving large-
scale climate influences without 
anthropogenic signals (e.g., dams 
and reservoirs). 

Fig 1 – the distribution of the countries involved in the ROBIN Network (blue) and the black dots indicate stations included in 

the first phase of the dataset.  Taken from Turner et al. (2025).



Phase Target Analysis Statistics

1.0 Trend Analysis (High 
Flows)

POT, AMAX, Q5, Q10 Set Trends (1981-2010) and Multi-
Temporal Trends

Mann-Kendall
Theil-Sen Slope
P-Values

2.0 Transition Analysis 
(Extremes)

Intensity, Duration, 
Frequency (Wet and Dry 
Extremes)

Accumulation Periods SSI 1 – 24
Thresholds Moderate, Severe, Extreme

(as above)

3.0 Climate Variability Climate Indices (e.g., ENSO, 
NAO, AMO)

Concurrent and Lagged (3-9 month) 
associations with High Flow and 
Transition Metrics

Pearsons 
Correlations 

4.0 Comparison with Diverse 
Catchments

GSIM Global Dataset Repeat all work above Repeat all work 
above

5.0 Machine Learning Model 
Framework

POT frequency and 
magnitude 

Process attribution through feature 
importance

SHAP, PDPs, ALE, 
LIME

Building a Robust Methods Workflow and Code Library 



Fig 2 - global distribution of AMAX trends for 1975–2016, derived using the Mann–Kendall Z statistic. Upward triangles indicate increasing peak flows, downward triangles 

indicate decreasing flows; filled symbols denote statistically significant trends (|Z| > 1.96), while open symbols are non-significant.

1.0 Trend Analysis



Fig 3 - global distribution of AMAX trends for 1975–2016, and 1981-2010 derived using the Mann–Kendall Z statistic. Upward triangles indicate increasing peak flows, downward 

triangles indicate decreasing flows; filled symbols denote statistically significant trends (|Z| > 1.96), while open symbols are non-significant.



Fig 4 - global distribution of high flow (Q5 and Q10) trends for 1981-2010 (left), and POT 1981-2010 and 1976-2016 (right) derived using the Mann–Kendall Z statistic. 



Fig 5 - Regional Mann–Kendall Z-scores for AMAX (annual maximum flow) in European catchments, calculated over varying combinations of start and end years. Colours indicate the magnitude 

and direction of monotonic trends, with warm tones representing increasing trends and cool tones representing decreasing trends. The multi-temporal approach allows assessment of how 

detected trends vary with the chosen period, providing insights into temporal stability and sensitivity to period selection.

1.1 Multi-Temporal Trend Analysis (e.g., AMAX)



2.0 Transition Analysis (Catchment Mean)

Fig 6  - Spatial distribution of mean SSI-3 (Standardised Streamflow Index, 3-month) transition intensity for all analysed catchments globally, using a transition threshold of 1.6.

 Colours represent the mean intensity of identified transitions between drought and wetness states over the study period, with warmer colours indicating stronger average transitions.



Fig 7 - Spatial patterns of SSI-3 (threshold = 1.6) transition metrics across European catchments. (a) Mean intensity of transitions, (b) mean magnitude, (c) mean duration in months, and (d) number of 
transitions. Metrics are computed per catchment over the full analysis period, with colors indicating relative magnitude and dots representing station locations.



Fig 8 - Heatmap of mean Pearson correlation coefficients between seasonal climate indices and Peak-Over-Threshold (POT) extreme flow metrics for the DJF (December–February) season, 

aggregated by IPCC reference region. Rows correspond to regions, while columns represent combinations of climate indices and time lags (in months) relative to the extreme flow events. Red 

shading indicates positive correlations (higher index values associated with higher extreme flows), and blue shading indicates negative correlations (higher index values associated with lower 

extreme flows), with colour intensity proportional to correlation strength.

3.0 Climate Index Seasonal Mean Concurrent and Lagged Correlation with POT Seasonal Frequencies

NAO
ENSO



Fig 9 - Regional correlation maps showing the relationship between the NAO (DJF, lag 0 months) and Peak-Over-Threshold extreme flows. Marker orientation indicates correlation sign (▲ positive, 

▼ negative), and fill indicates statistical significance (p < 0.05). Panels show West & Central Europe, North America, and western North America, highlighting spatial variations in the NAO’s 

influence on winter flood extremes.



Fig 10 -Spatial correlations between seasonal high-flow magnitudes and selected climate drivers (ENSO, EA, NAO, AMO, Jet Latitude, Jet Intensity) for Europe in DJF at lag 0 months. Upward 

triangles = positive correlations; downward triangles = negative correlations; filled markers = statistically significant (p < 0.05). Colours indicate Pearson r values.



Fig 11 -Spatial correlations between seasonal peak‐over‐threshold (POT) high‐flow anomalies and six key climate drivers for North America (DJF, lag = 0 months). Triangles indicate positive 

correlations, and inverted triangles indicate negative correlations; filled symbols denote statistically significant relationships (p < 0.05). Colours represent Pearson correlation coefficients, 

highlighting regional variations in hydroclimatic sensitivity to each driver.



Fig 12 -Dominant climate driver for POT during DJF at lag 0months. For each catchment, the climate driver with the largest absolute Pearson correlation was selected with marker shape indicating 

the correlation sign (▲ positive, ▼negative) and filled markers denoting statistical significance at p < 0.05. Colors correspond to different climate drivers.



Next Steps?

1. Complete analysis on “Understanding the impacts of climate variability on global near-natural river flows”

1.1 Transition Trend Analysis 

1.2 GSIM Diverse Catchment Comparison

1.3 Digging in to explaining the relationship between climate drivers and floods/flood trends

2.    Phase II of the Project leveraging Machine Learning Models  

 



5.0 Machine Learning Models for ROBIN Catchments – University of Oxford Project for 2026

 
Professor Louise Slater, Professor Hannah Christensen, and Professor Manuela 
Brunner (ML & Hydrology Supervision Team) + UKCEH ROBIN Supervisors 

• ROBIN catchment dataset provides global coverage with rich hydro-climatic 
timeseries, look at climate driver importance 

• ML accounts for nonlinear relationships, and quantifies driver importance over 
space and time 

• Attribute seasonal differences in hydrological response to multiple climate drivers 
and catchment processes

• Random Forests, XGBoost, SHAP

Identify climate process attributions, what drivers dominate, when and where, for 
extreme flood events?
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