
Intro to Git
Simon Stanley

• Version control basics
• Branching and merging
• Remote repositories
• Further tools

2

Contents

Every time we update and save a file, we
create a new version of that file.

In the traditional way we do this, only the
latest version is available.

• We have no access to previous
versions.

• We cannot see the changes made in
each save.

3

Version control

V1

V2

V3

V4

V5

V6
(current)

save

save

save

save

save

Version control software (like Git)
gives us these capabilities to see and
interact with every change…

… and much more!

Let’s look at a demonstration to see
why this is useful.

4

Version control

V1

V2

V3

V4

V5

V6
(current)

commit

commit

commit

commit

commit

5

Demo

V1

V2

V3

V4

V5

V6
(current)

commit

commit

commit

commit

commit

6

Demo – Initialise repository

git init

git repository

7

Demo – Initialise repository

git add

git commit

These files now tracked by git

8

Demo – Explore changes

Initial
commit
78rg74

Make
changes
and save
the file

git status

Shows the status of the
repository, including
any files that have been
changed since last
commit

git diff
Shows the actual
changes that have been
made since last commit

9

Demo – Commit changes

Make
changes
and save
the file

git add <file>

“Stages” the
file (ready for
committing)

git commit

Commit
changes

Initial
commit
78rg74

Add noise
function

gy3t2d

Tip: use git commit -m “<Commit message>”

10

Demo - Branch

Initial
commit
78rg74

Add noise
function

gy3t2d

Add feed
function
bhrv62

Add info
functions

1gd9df

Revert feed
function
ny83gu

Fix feed
function

ab933f

Branch (master)

Commits Branch HEAD

Commit
message

Commit
reference

git log to see all commits

git show to inspect individual commit

Log into GitHub:
https://github.com/NERC-CEH/intro-to-git-exercises

Click “Code” -> “Codespaces” -> “+”

11

Exercise 1

https://github.com/NERC-CEH/intro-to-git-exercises

1. Add noise function
• Use git status and git diff to check the changes.
• Use git add and git commit to commit the changes.

2. Add feed function
3. Add info function and list_animals function

• Add and commit both files into one commit

4. Checkout one of the earlier commits
5. Checkout the latest commit
6. Revert one of the commits (not the initial commit!)

12

Exercise 1

Commands
• git init – Set a directory as a git repository

• git status – See overall state of repository
• git log – List all commits
• git show – Show changes in a commit

• git checkout <ref> – Move between commits

• git diff – Show uncommitted changes
• git add <file> – Stage uncommitted changes
• git commit – Commit added changes
• git revert – Undo changes in a commit

Information

Committing
changes

Movement

Initialisation

Branching
So far, we have made all out commits on one
branch, the master branch.

In git we can create new branches which
contain their own chain of commits.

Branching allows us to develop code in
isolation, meaning we cannot accidently break
things on the master branch.

It means we can test and experiment to our
hearts content!

master
branch

development
branch

Branching
There are three key commands for branching:

git branch

Lists all the branches in the repository. In this
example it would list:

• master
• dev

master
branch

dev
branch

Branching

git checkout <branch name>

Switches us onto the chosen branch.

Remember, when we are “on a
branch”, it means the directory is
changed to the state of the latest
commit on that branch.

git checkout master

git checkout dev

Branching

git checkout -b <branch name>

This creates a new branch from the current
commit.

Note, the new branch starts in the same
state as where it was branched from.
When you start making commits on that
branch, it will grow independently from the
original.

master
branch

dev
branch

18

Demo
master
branch

dev
branch

19

Demo – New branch

git checkout -b dev_zoo

These commits are now part of
master and dev_zoo.

dev_zoo, master

20

Demo – New commit

master

dev_zoo

add_animal
pghty3

Master branch
unchanged

Added new commit on dev_zoo

21

Demo – Commit on master

master

dev_zoo

add_animal
pghty3

whos_hungry
yn89p3

Branches have
diverged

git checkout master

Added a new commit

Merging
Branching allows us to develop code in
isolation and safety.

Once we are happy our developments are
correct, we want to merge these back onto the
master branch.

This is done with the command:

git merge <branch to merge>

git merge <branch>

Merging
There are two types of merge:

1. Fast forward merging

Where no change has been
made to the original branch, the
commits can just be added on…
(same as if they were developed
on that branch in the first place)

git merge <branch>

Merging
The second type of merge:

2. Auto merging

Where other commits have
been made (or merged into) the
original branch, git must work
out how to combine the
changes.

In doing so it creates an extra
merge commit.

merge
commit

git merge <branch>

Merging
The second type of merge:

2. Auto merging

In most circumstances you
don’t need to worry about this,
git does the work.

However, when separate
developments change the same
part of the file, we get a
conflict…

merge
commit

git merge <branch>

26

Demo

27

Demo – Merging

add_animal
pghty3

whos_hungry
yn89p3

To merge dev_zoo into master…

git checkout master

git merge dev_zoo

28

Demo – Merging

add_animal
pghty3

whos_hungry
yn89p3

add_animal
pghty3

Merge branch
'dev_zoo’

352fhs

master

dev_zoo

git merge dev_zoo

1. Create a new branch
• Use git checkout –b <branch>

2. Add (and commit) the add_animal function
3. Switch between master and new branch

• Use git branch to see all the branches
• Use git checkout <branch> to switch

4. Merge new branch into master
• Switch to master branch using
• Use git merge <branch> to merge in commits from new

branch

29

Exercise 2

Commands
• git branch – List all branches

• git checkout <branch> – Move between branches

• git checkout –b <branch> – Create new branch

• git merge <branch> - Merge commits from other branch
into current branch

Remote repositories
We have seen how git allows us to
develop files in isolated ways on
separate branches and merge the
changes together.
However, we have been doing this alone,
on our own personal machines.

Development jumps to the
next level when we can
share copies of repositories
have multiple people work
together in parallel.

Remote
repository

Remote repositories
To do this, we create a centralised
version of the repository that
everyone can access.

These are called remote repositories.

The most famous host for remote
repositories is GitHub.

Remote
repository

Remote repositories
We won’t go into detail in this course, but
the main commands used to interact with
remote repositories are:

• git clone – Download a repository onto
your machine

• git push – push the latest branches /
commits to the remote

• git pull – pull down the latest branches
/ commits (i.e. changes others have
made)

These commands allow everyone to stay
up to date with the latest developments.

Remote
repository

git push git pull

Further tools
Manipulating commits:

git add –patch <files>
This triggers an interactive session where you can pick individual
changes within a file to be staged.

git commit –amend
Edit the latest commit, either add more changes to it, or update the
commit message.
Note, this should NOT be done after a commit has been pushed to a
remote repository.

Manipulating commits:

git rebase
This is a powerful tool for reorganising commits
and branches. The two main capabilities are:

• Squash multiple commits into a single
commit.

• Moving sets of commits from one branch to
another (like merging, but not the whole
branch).

Further tools

master
branch

dev2
branch

dev1
branch

This should NOT be done after a commit has been pushed to a remote
repository.

Further tools
git stash
If you are working on changes, but before finishing and committing, you
need to switch branches, e.g. a major bug on the master branch needs
fixing ASAP!

Well you can’t! git does not allow you to switch branches before changes
are committed because they would be lost.

git stash allows you to “stash” uncommitted changes so you can do this.
When you run git stash, the repository will return to the current state of
the branch, and your changes will disappear. You can then switch.

When you are ready to get those uncommitted changes back, use:
git stash apply

Further tools
Investigation:

git blame <file>
This prints out every line of a file with the commit that last changed it.
This is useful in debugging for tracking down why a change was made
(hence why clear commit messages are important)

git diff <branch1>..<branch2>
This shows the line by line differences between two branches.

git log <branch1>..<branch2>
Shows all the commits that are in branch2 that are not in branch1.

Further tools
Investigation:

git log -S “string”
Finds commits which contain the string either in the commit message or
the commit changes.

git grep “string”
Search the repository for a string.
(This is just like the normal grep command but more efficient when
grepping inside a repository)

39

Thank you
Any questions?

40

https://git-scm.com/

V1.0.0

V1.0.1

V1.1.0

V1.1.1

V2.0.0

V2.0.1

Further information

https://git-scm.com/

41

Installing git
See here for installing git:

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

42

git init
Any folder can be turned into a git repository.
It simply means any changes to the contents of that folder can
now be tracked by git.

To make a folder a git repository:

Example:

cd /path/to/directory/
git init

43

git status
This command shows us the current state of the git repository.
The key information being:

• What branch we are on

• What files have been changed, staged or are untracked

We see what each of these mean as we go.

44

git status
Example:

45

git diff
After changes are made, but before they are staged and
committed, we use git diff to view the updates.

This shows us everything that has been added and removed
allowing us to review the changes.

46

git diff
Prints out all the
changes.
Green for lines added
Red for lines removed
Where a line is changed
we see the previous
version removed and
new version added

Example git status
Lists the files
that have
changed

47

git commit
Committing in git is like saving, except:

• You can commit changes to multiple files at once, i.e. you
save the state of the repository instead of just one file.

• The previous state of the repository is not lost

• When you make a commit, you must add a comment that
explains the changes.

48

git commit

git add, both files

Status now shows us
staged file(s) in green

Example

git status
Lists the files
that have
changed (again)

Status now confirms there
are no changes to commit

49

Staging and committing
Before we can make a commit, there is an interim state called
staging.
Only staged changes can be committed.

It is good practice to keep each commit as a single, describable
change, e.g. adding a new feature or fixing a bug.
When working on these however, it is very easy to do more than
a single change, for example, you spot another bug or fix a typo.

Staging allows us to make these multiple changes to a
repository but split these into separate commits.

The command for staging is: git add

50

git status
Lists untracked files

git commit
Use –m to add the
commit description
(if –m not given a text
editor will open)

git add, just the file to
stage for this commit

Status now shows us
staged file(s) in green

Example

51

git log and git show
Git keeps a record of every commit made.
Its tools to interact and manipulate this record is what makes it
so powerful.

The first two commands for viewing this record are:

• git log – view the entire commit list (for the current branch)

• git show <commit ID> – show the changes made in a given
commit

Lets view the commits made so far in our example.

52

Example

git log
Here we see the three
commits we’ve made so far
(latest commit at the top,
first at the bottom).

The large hash keys are the
commit’s IDs

53

Example

git show
Notice we specify the
commit ID in the git show
command.

The commit info and
changes made, are then
displayed

Note, git show with no
commit ID will show the
latest commit

git checkout
This command pops up a few places…
• git checkout <commit ref> - move to the state of the given

commit.
• git checkout <branch> - move to the head of given branch (i.e.

the latest commit on that branch).
• git checkout <file> - Undo any uncommitted changes to the file

(you will loose work). In other words, put the file in the state of
the latest commit.

The general meaning of “checkout” is to move files to a committed
state.

Branching
In git we can create new branches which
contain their own chain of commits.

Branching allows us to develop code in
isolation, meaning we cannot accidently break
things on the master branch.

It means we can test and experiment to our
hearts content!

master
branch

development
branch

56

Example

git checkout –b zoo_hungry

A git status confirms we are
on the new branch

Lets add some commits to
this branch…

57

Example

git log

Here are the three new
commits we’ve made on
the zoo_hungry branch

This is where zoo_hungry
was branched off master

Example

Here’s what we have so far…

master
branch

zoo_hungry
branch

Imagine now we are someone else
wanting to develop a separate
addition to the code from the
master branch.

Let’s go back to the master branch
and create another new branch…

59

Example

git branch
List all branches and
highlight the current branch

git checkout master
Switch (back) to the
master branch

git log
Confirms we are back at the
same commit where we left
it

60

Example

git checkout –b zoo_feed

A git status confirms we are
on the new branch

Lets add some commits to
this branch…

61

Example

git log

The new commit made
on the zoo_feed branch

Example

Now we have three branches all
at different points.

What’s more, zoo_hungry and
zoo_feed have diverged from
master in separate ways.

This is where git proves to be
very powerful in its ability to
merge changes…

master
branch

zoo_hungry
branch

zoo_feed
branch

Merging - conflicts
Branching allows us to develop code in
isolation and safety.

Once we are happy our developments are
correct, we want to merge these back onto the
master branch.

If changes are made to the same code on the
branch being merged, there will be a conflict…

64

Example

git checkout master
Must be on branch we
want to merge into.

git log
We see the commits
from zoo_hungry now
on the master branch

git merge zoo_hungry
As master has not changed
since branching off
zoo_hungry, this is a fast
forward merge

65

Example

git merge zoo_feed
Because we merged
zoo_hungry, master has now
changed since zoo_feed was
branched off.

This means git will attempt to auto merge. However, in both branches
we made changes to the same part of the file, and so there is a conflict!

These must be manually resolved…

git status gives us
some guidence

66

Example

What’s in the current
branch (master)

What’s in the branch
being merged in
(zoo_feed)

In this case we want to keep both changes.

Note that we can edit these files how we like at this point as this all becomes
part of the merge commit.

67

Example

Add and commit
changes once conflicts
are resolved. (No need
to change the default
commit message)

git log shows us the all
the commits from both
branches now there, plus
the merge commit at the
top.

	Intro to Git
	Contents
	Version control
	Version control
	Demo
	Demo – Initialise repository
	Demo – Initialise repository
	Demo – Explore changes
	Demo – Commit changes
	Demo - Branch
	Exercise 1
	Exercise 1
	Commands
	Branching
	Branching
	Branching
	Branching
	Demo
	Demo – New branch
	Demo – New commit
	Demo – Commit on master
	Merging
	Merging
	Merging
	Merging
	Demo
	Demo – Merging
	Demo – Merging
	Exercise 2
	Commands
	Remote repositories
	Remote repositories
	Remote repositories
	Further tools
	Further tools
	Further tools
	Further tools
	Further tools
	Thank you
	Further information
	Installing git
	git init
	git status
	git status
	git diff
	Slide Number 46
	git commit
	Slide Number 48
	Staging and committing
	Slide Number 50
	git log and git show
	Slide Number 52
	Slide Number 53
	git checkout
	Branching
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Merging - conflicts
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67

