Hydro-JULES hydrological MIP protocol, version 1.1

Elizabeth Cooper¹, Helen Baron¹, Emma Robinson¹, Rosanna Lane¹, Gabriele Arduini², Steven Birkinshaw⁸, Segolene Berthou³, Burak Bulut¹, Eleanor Blyth¹, Amulya Chevuturi¹, Douglas Clark¹, Gemma Coxon⁴, Simon Dadson^{1,5}, Gurpreet Das², Richard Davis⁶, Rich Ellis¹, Katie Facer-Childs¹, Emma Ford⁵, Matt Fry¹, Helen Harfoot⁶, Liz Lewis⁷, MikeVaughan⁶, Christel Prudhomme², Heather Rumbold³, Ben Smith⁸, Gianni Vesuviano¹

¹UKCEH, ²ECMWF, ³Met Office, ⁴University of Bristol, ⁵University of Oxford, ⁶Environment Agency, ⁷University of Manchester, ⁸University of Newcastle

Introduction

Hydro-JULES is a NERC funded research programme bringing together a wide community of modellers to inform a new generation of hydrological models. As part of the Hydro-JULES cross-cutting benchmarking and model intercomparison theme, we have been consulting the community about running a hydrological Model Intercomparison Project (MIP). Following a series of meetings with stakeholders and further community consultation, we are now ready to circulate our community-agreed MIP protocol. We would be very pleased to have more models included in the MIP; if you run a hydrological model and would like to be included, please read the protocol and contact us at hydrojules@ceh.ac.uk.

The purpose of the MIP is to gather together modelled river flow outputs spanning a historical 30-year period in order to help explore and summarise the current strengths of hydrological models used by the UK community. The MIP will include a range of types of hydrological models; crucially all of the models will use consistent driving data to generate outputs for a large number of GB catchments. This will allow us to explore the relative strengths of different approaches to hydrological modelling, enhancing our understanding of hydrological process representation in models. We aim to answer questions about the importance of different methods of process representation across flow regimes and catchment types. We also wish to investigate the relative strengths of taking a multi-model ensemble approach to hydrological modelling. We anticipate that this work will lead to at least one publication, the author list for which will include all MIP participants. We will also make all model outputs open and accessible to the hydrological community, enabling further research and analysis beyond the scope of the hydro-JULES project.

About this protocol

In this protocol we describe the experiments, input datasets, and output variables which will be included in the MIP. We also outline how to provide model results and some of the metrics that will be used to analyse them. This is the protocol for phase 1 of the MIP; future phases may have a different or wider scope, including different driving data, output variables, and/or spatial and temporal extents. Please also see our future roadmap for more details on future plans.

1. Experiments

- a. Spatial extent. This MIP will compare modelled river flow for 673 catchments across the UK. This will comprise the 671 catchments covered by the CAMELS-GB dataset(https://doi.org/10.5194/essd-12-2459-2020) as well as the Tweed at Kingledores (https://nrfa.ceh.ac.uk/data/station/info/21014) and the Severn at Abermule (https://nrfa.ceh.ac.uk/data/station/info/54014) (data for these catchments to be provided by Gemma Coxon).
- b. **Temporal extent.** We will analyse daily river flow outputs for the years 1990 to 2019 inclusive for models which produce this output. We will also perform analyses for the years 2010 2019 inclusive (this shorter time span allows for machine learning methods to have sufficient training years).
- c. Calibration/Training. For inclusion in the full comparison of hydrographs, modellers who require calibration/training periods should use (any) years between 1961 and 1989 for this purpose. For inclusion in this shorter analysis period, modellers can use years between 1961 and 2009 for calibration/training. If recalibration is not possible for your model, please contact the MIP team (hydrojules@ceh.ac.uk).
- d. **Spin-up**. Models requiring a spin-up should use data from any years between 1961 and 1989. We have no restrictions on how model stores are initialised or the length of spin-up period.
- e. **Model setup.** Spatial resolution, parameter values and ancillary datasets may be chosen by the user to suit their model. We will seek to document differences between models.

2. Driving data

This MIP requires common meteorological driving data for all physical models. Gridded meteorological drivers from, or based on, the CHESS-met dataset should be used, apart from precipitation, which should be from the HadUK-Grid dataset. See Table 1 for a summary of required input datasets and where these can be accessed. For models requiring catchment-average inputs, these will be available as part of CAMELS-GB version 2. Please email Gemma Coxon (gemma.coxon@bristol.ac.uk) for early access to these data. CAMELS-GB v2 does not include catchment average data for all CHESS-met variables, please email the MIP team if these are required by your catchment model. Modelers may otherwise aggregate or disaggregate the gridded driving data in time or space to suit their model (e.g. to create subdaily meteorological forcing) but we ask that details of any such procedures are provided along with output data.

Table 1. Summary of hydrometeorological input variables to be used within the MIP and where they can be accessed.

		Data access						
Variable	Data to use for the MIP	For models requiring catchment-average inputs	For models requiring gridded inputs					
Precipitation	HadUK-Grid precipitation	Available as part of CAMELS-GB v2, email Gemma Coxon for early access	Download from CEDA archive: https://dx.doi.org/10.5285 /b963ead70580451aa745 5782224479d5 or access on JASMIN: /badc/ukmo- hadobs/data/insitu/MOHC /HadOBS/HadUK- Grid/v1.3.0.ceda/					
Potential evapotranspiration (with or without interception)	CHESS-PE Optional extra runs: Hydro-PE HadUK-Grid	(gemma.coxon@bri stol.ac.uk)	Download from EIDC: https://doi.org/10.5285/86 51771d-aa6d-4d0f-8bcd- b3be1f733852 or access on JASMIN: /gws/nopw/j04/hydro_jule s/data/uk/driving_data/che ss/chess-pe/					

		(available to all registered
		users)
		For optional extra runs,
		Hydro-PE HadUK Grid can
		be downloaded from:
		https://doi.org/10.5285/be
		b62085-ba81-480c-9ed0-
		2d31c27ff196
Air temperature		D 1 16 51D0
Specific humidity		Download from EIDC:
Downward		https://doi.org/10.5285/83
shortwave radiation		5a50df-e74f-4bfb-b593-
		804fd61d5eab
Downward	011500+	or access on JASMIN:
longwave radiation	CHESS-met	- /gws/nopw/j04/hydro_jule
Surface air		s/data/uk/driving_data/che
pressure		ss/chess-met/
Wind speed		(available to all registered
Daily temperature		`
range		users)

CHESS-met comprises meteorological data for the period 1961-2019 at a daily timestep, 1km resolution at a measurement height of 1.2m. The variables available are: air temperature at 1.2m (K), specific humidity at 1.2m (kg kg-1), downward shortwave radiation (W m-2), downward longwave radiation (W m-2), surface air pressure (Pa), wind speed at 10m (m s-1), daily temperature range (K). The CHESS-met dataset also contains precipitation. However, in this MIP we will use precipitation from the HadUK-Grid dataset.

For models that require PE as an input, we require modellers to use CHESS-PE. This is the PE product most consistent with the CHESS-met drivers and the JULES model and comprises two related datasets; modellers can select either the PETI option which includes a correction for interception, or the PET version which has no correction for interception. We recognise that a limitation of the CHESS-PE product is that it only extends until 2019, and therefore runs cannot include the 2021/2022 drought. We invite any modellers submitting flows to the main MIP to also consider producing a second set of flows using Hydro-PE HadUK-Grid as the PE input. Details of these optional extra runs are given in section 7.

While we require consistent meteorological driving data, there will be no constraints on other inputs. We want to encourage as many modellers to contribute to the MIP as possible, and recognise that it would not be practical to request that everyone uses the

same ancillary datasets. We also understand that there are vast differences in data requirements between models. For models requiring catchment characteristic data, this is available from the CAMELS-GB dataset: <u>Catchment attributes and hydro-meteorological timeseries for 671 catchments across Great Britain (CAMELS-GB) - EIDC.</u>

3. Output variables

Please provide daily timeseries of river flow in m³s⁻¹ for the 673 catchments specified above, for the years 1990 – 2019 inclusive, or for the years 2010-2019 inclusive. River flow outputs can be supplied either in a netcdf format or as a .csv file with 17 header lines containing all the all the required model run information. Please format the filename in lowercase as: [model]_[start-date]_[end-date]_[PE input]_[any additional required run identifier]. For example g2g_1990_2019_chesspeti.csv. Table 2 details information that should be supplied as global attributes (if supplying flows in netcdf format) or header lines (if supplying flows as a csv).

Please supply model outputs as an array of river flows. Columns should be the year, month and day followed by flows for each of the MIP catchments (preferably with gauging station numbers in ascending order). Please supply any missing values as -1, with an explanation for why these could not be simulated given in the model_MIP_notes section.

Template model output files have been provided on JASMIN (/gws/nopw/j04/hydro_jules/data/uk_hydro_mip), with an example of what this looks like in Figure 1.

CSV	Name	Description	Example
line			
no.			
1	title	Short title describing model	Grid-to-Grid (G2G) daily
		runs	mean flows (m3 s-1)
			covering 1990-2019,
			generated for the Hydro-
			JULES MIP
2	creator_name	Name of person carrying out	Rosanna Lane
		the model runs	
3	creator_institution	Primary institution of person	UK Centre for Ecology and
		carrying out the model runs	Hydrology (UKCEH)
4	creator_email	Email address of person	roslan@ceh.ac.uk
		carrying out the model runs	
5	date_created	dd/mm/yyyy	01/04/2025
6	input_PE	CHESS-PETI or CHESS-PET	CHESS-PETI

		(Hydro-PE HadUK-Grid for	
		optional extra runs)	
7	input_precip	This should be HadUK-Grid	HadUK-Grid
8	input_temperature	This should be CHESS-MET or None	CHESS-met
9	time_period_start	Start date of model outputs, given as DD/MM/YYYY	01/01/1990
10	time_period_end	End date of model outputs, given as DD/MM/YYYY	31/12/2019
11	model_name	Full name of model	Grid-to-Grid (G2G)
12	model_reference	Reference to use when discussing model	Bell et al. (2009) Use of soil data in a grid-based hydrological model to estimate spatial variation in changing flood risk across the UK. JoH, 377(3-4), 335-350.
13	model_spatial_resolution	Resolution (specify if catchment, HRU-based or gridded model)	1km grid
14	model_timestep_minutes	Model time step in minutes (i.e. 1440 if run at a daily resolution)	15
15	model_calibration	details of model calibration	uncalibrated. G2G is mainly parameterised using spatial datasets of landscape properties (e.g. HOST soil types) rather than via catchment calibration.
16	model_setup	details of model setup	Here, the model has been run for each 1km grid square across Great Britain, and flows have been extracted for grid squares which best relate to the locations of gauging stations.
17	model_MIP_notes	Any model specific notes that are relevant for the MIP	G2G simulates naturalised flows on a 1km grid and is therefore not expected to match observations for catchments with heavily modified flow regimes or small areas.

-41	Α	В	С	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	title: Grid-to-Grid (G2G) daily mean flows generated for the Hydro-JULES MIP								MIP											
2	creator	_nam	e: Ros	anna Lane																
3	creator	_insti	tution	UK Centre	for Ecology	y and Hydro	ology (UKC	EH)												
4	creator	_ema	il: ros	an@ceh.a	c.uk															
5	date_cr	eated	1: 01/0	1/2025																
6	input_F	E: CH	ESS-P	TI																
7	input_p	recip	: Hadl	JK-Grid																
8	input_t	empe	rature	CHESS-me	et															
9	time_p	eriod	start:	01/01/1990																
10	time_p	eriod	end: 3	1/12/2019																
11	model_	name	e: Grid	to-Grid (G	2G)															
12	model_	refer	ence: l	Bell et al. (2	009) Use of	f soil data i	in a grid-b	ased hydro	logical mo	del to estir	nate spatia	l variatio	n in changii	ng flood ris	sk across t	he UK. JoH				
13	model_	spati	al_res	olution: 1k	m grid															
14	model_	times	step_n	inutes: 15																
15	model	calib	ration	uncalibra	ted. G2G is	mainly pa	rameterise	ed using sp	atial datas	ets of land	scape pro	perties (e.	g. HOST soi	l types) rat	her than vi	ia catchme	nt calibrati	ion.		
16	model_	setup	the r	nodel has I	een run fo	r each 1km	n grid squa	re across (Great Britai	n, and flov	vs have be			quares wh	ich best re	late to the l	ocations o	f gauging s	tations.	
												n extracte	d for grid s			late to the l y modified f				
16	model		notes:									n extracte	d for grid s							8004
16 17	model	MIP_	notes:	G2G simul	ates natura	lised flow	s on a 1km	grid and is	s therefore	not expect	ed to matcl	n extracte observat	d for grid s ions for cat	tchments v	vith heavily	y modified t	low regime	es or small	areas.	8004 4.998
16 17 18	model_ YYYY	MIP_ MM	notes: DD	G2G simul 1001	ates natura 2001	alised flows 2002	s on a 1km 3003	grid and is 4001	s therefore 4003	not expect	ed to matcl 4006	n extracte observat 5003	d for grid s ions for cat 6007	tchments v 6008	vith heavily 7001	y modified f 7002	low regime 7003	es or small 7005	7006	
16 17 18 19	model_ YYYY 1990	MIP_ MM 1	notes: DD 1 2	G2G simul 1001 0.912	2001 8.194	2002 6.024	3003 6.262	grid and is 4001 24.08	s therefore 4003 4.786	4005 3.383	4006 2.894	n extracte observat 5003 15.311	d for grid solions for car 6007 49.611	6008 1.967	7001 6.127	7002 11.343	7003 1.162	7005 1.233	7006 4.998	4.998
16 17 18 19 20	model_ YYYY 1990 1990	MIP_ MM 1	notes: DD 1 2	G2G simul 1001 0.912 0.897	2001 8.194 7.6	2002 6.024 5.51	3003 6.262 5.938	4001 24.08 22.912	4003 4.786 4.876	4005 3.383 3.37	4006 2.894 2.748	observat 5003 15.311 15.05	d for grid s ions for cat 6007 49.611 44.97	6008 1.967 1.817	7001 6.127 5.987	y modified f 7002 11.343 9.578	7003 1.162 1.107	7005 1.233 1.131	7006 4.998 4.725	4.998 4.725
16 17 18 19 20 21	model_ YYYY 1990 1990 1990	MIP_ MM 1 1	DD 1 2 3	G2G simul 1001 0.912 0.897 0.815	2001 8.194 7.6 7.224	2002 6.024 5.51 5.197	s on a 1km 3003 6.262 5.938 5.733	9rid and is 4001 24.08 22.912 21.926	4003 4.786 4.876 4.44	4005 3.383 3.37 3.169	4006 2.894 2.748 2.604	5003 15.311 15.05 14.682	6d for grid s ions for cat 6007 49.611 44.97 41.929	6008 1.967 1.817 1.712	7001 6.127 5.987 5.704	y modified f 7002 11.343 9.578 8.942	7003 1.162 1.107 1.054	7005 1.233 1.131 1.056	7006 4.998 4.725 4.748	4.998 4.725 4.748
16 17 18 19 20 21 22	model_ YYYY 1990 1990 1990	MIP_ MM 1 1 1	DD 1 2 3 4	0.815 0.72 0.72	2001 8.194 7.6 7.224 6.941	2002 6.024 5.51 5.197 4.885	s on a 1km 3003 6.262 5.938 5.733 5.364	4001 24.08 22.912 21.926 20.639	4003 4.786 4.876 4.44 3.892	not expect 4005 3.383 3.37 3.169 2.928	4006 2.894 2.748 2.604 2.45	5003 15.311 15.05 14.682 13.79	6d for grid s cions for cat 6007 49.611 44.97 41.929 40.061	6008 1.967 1.817 1.712 1.616	7001 6.127 5.987 5.704 5.096	y modified f 7002 11.343 9.578 8.942 8.66	7003 1.162 1.107 1.054 1.021	7005 1.233 1.131 1.056 1.033	7006 4.998 4.725 4.748 5.212	4.998 4.725 4.748 5.212
16 17 18 19 20 21 22 23	model_ YYYY 1990 1990 1990 1990	MIP_ MM 1 1 1 1	DD 1 2 3 4 5	G2G simul 1001 0.912 0.897 0.815 0.72 0.654	2001 8.194 7.6 7.224 6.941 6.704	2002 6.024 5.51 5.197 4.885 4.746	3003 6.262 5.938 5.733 5.364 5.205	4001 24.08 22.912 21.926 20.639 19.666	s therefore 4003 4.786 4.876 4.44 3.892 4.166	4005 3.383 3.37 3.169 2.928 3.097	ed to match 4006 2.894 2.748 2.604 2.45 2.429	5003 15.311 15.05 14.682 13.79 13.429	d for grid s ions for cat 6007 49.611 44.97 41.929 40.061 38.31	6008 1.967 1.817 1.712 1.616 1.558	7001 6.127 5.987 5.704 5.096 4.688	y modified f 7002 11.343 9.578 8.942 8.66 8.113	7003 1.162 1.107 1.054 1.021 1.007	7005 1.233 1.131 1.056 1.033 1.027	4.998 4.725 4.748 5.212 5.97	4.998 4.725 4.748 5.212 5.97
16 17 18 19 20 21 22 23 24	model_ YYYY 1990 1990 1990 1990 1990	MIP_ MM 1 1 1 1 1	DD 1 2 3 4 5 6	G2G simul 1001 0.912 0.897 0.815 0.72 0.654 0.605	2001 8.194 7.6 7.224 6.941 6.704 6.463	2002 6.024 5.51 5.197 4.885 4.746 4.625	s on a 1km 3003 6.262 5.938 5.733 5.364 5.205 5.67	9 grid and is 4001 24.08 22.912 21.926 20.639 19.666 20.4	s therefore 4003 4.786 4.876 4.44 3.892 4.166 4.855	100 expect 4005 3.383 3.37 3.169 2.928 3.097 4.301	ed to matcl 4006 2.894 2.748 2.604 2.45 2.429 2.964	5003 15.311 15.05 14.682 13.79 13.429 15.279	d for grid s ions for cat 6007 49.611 44.97 41.929 40.061 38.31 37.34	6008 1.967 1.817 1.712 1.616 1.558 1.754	7001 6.127 5.987 5.704 5.096 4.688 5.262	y modified (7002 11.343 9.578 8.942 8.66 8.113 7.404	7003 1.162 1.107 1.054 1.021 1.007 0.993	98 or small 7005 1.233 1.131 1.056 1.033 1.027 0.977	7006 4.998 4.725 4.748 5.212 5.97 6.038	4.998 4.725 4.748 5.212 5.97 6.038
16 17 18 19 20 21 22 23 24 25	model_ YYYY 1990 1990 1990 1990 1990 1990	MIP_ MM 1 1 1 1 1	DD 1 2 3 4 5 6 7 8	G2G simul 1001 0.912 0.897 0.815 0.72 0.654 0.605 0.562	ates natura 2001 8.194 7.6 7.224 6.941 6.704 6.463 6.338	2002 6.024 5.51 5.197 4.885 4.746 4.625 4.562	s on a 1km 3003 6.262 5.938 5.733 5.364 5.205 5.67 7.25	grid and is 4001 24.08 22.912 21.926 20.639 19.666 20.4 25.126	s therefore 4003 4.786 4.876 4.44 3.892 4.166 4.855 5.051	not expect 4005 3.383 3.37 3.169 2.928 3.097 4.301 5.286	ed to matcl 4006 2.894 2.748 2.604 2.45 2.429 2.964 4.182	5003 15.311 15.05 14.682 13.79 13.429 15.279 21.686	d for grid s ions for cat 6007 49.611 44.97 41.929 40.061 38.31 37.34 42.531	1.967 1.817 1.712 1.616 1.558 1.754 2.216	7001 6.127 5.987 5.704 5.096 4.688 5.262 6.19	y modified to 7002 11.343 9.578 8.942 8.66 8.113 7.404 7.298	7003 1.162 1.107 1.054 1.021 1.007 0.993 0.956	es or small 7005 1.233 1.131 1.056 1.033 1.027 0.977 0.903	7006 4.998 4.725 4.748 5.212 5.97 6.038 5.9	4.998 4.725 4.748 5.212 5.97 6.038 5.9
16 17 18 19 20 21 22 23 24 25 26	model_ YYYY 1990 1990 1990 1990 1990 1990 1990	MIP_ MM 1 1 1 1 1 1 1	DD 1 2 3 4 5 6 7 8	G2G simul 1001 0.912 0.897 0.815 0.72 0.654 0.605 0.562 0.588	2001 8.194 7.6 7.224 6.941 6.704 6.463 6.338 7.123	2002 6.024 5.51 5.197 4.885 4.746 4.625 4.562 5.414	s on a 1km 3003 6.262 5.938 5.733 5.364 5.205 5.67 7.25 8.742	grid and is 4001 24.08 22.912 21.926 20.639 19.666 20.4 25.126 29.659	s therefore 4003 4.786 4.876 4.44 3.892 4.166 4.855 5.051 5.082	not expect 4005 3.383 3.37 3.169 2.928 3.097 4.301 5.286 5.123	ed to matcl 4006 2.894 2.748 2.604 2.45 2.429 2.964 4.182 4.438	5003 15.311 15.05 14.682 13.79 13.429 15.279 21.686 25.752	d for grid s dons for cat 6007 49.611 44.97 41.929 40.061 38.31 37.34 42.531 59.114	1.967 1.817 1.712 1.616 1.558 1.754 2.216	vith heavily 7001 6.127 5.987 5.704 5.096 4.688 5.262 6.19 6.893	y modified to 7002 11.343 9.578 8.942 8.66 8.113 7.404 7.298 8.027	7003 1.162 1.107 1.054 1.021 1.007 0.993 0.956 0.903	es or small 7005 1.233 1.131 1.056 1.033 1.027 0.977 0.903 0.873	4.998 4.725 4.748 5.212 5.97 6.038 5.9 5.284	4.998 4.725 4.748 5.212 5.97 6.038 5.9 5.284
16 17 18 19 20 21 22 23 24 25 26 27	model_ YYYY 1990 1990 1990 1990 1990 1990 1990 1990	MIP_ MM 1 1 1 1 1 1 1 1	notes: DD 1 2 3 4 5 6 7 8	G2G simul 1001 0.912 0.897 0.815 0.72 0.654 0.605 0.562 0.588 0.781	2001 8.194 7.6 7.224 6.941 6.704 6.463 6.338 7.123 9.055	2002 6.024 5.51 5.197 4.885 4.746 4.625 4.562 5.414	s on a 1km 3003 6.262 5.938 5.733 5.364 5.205 5.67 7.25 8.742 11.109	grid and is 4001 24.08 22.912 21.926 20.639 19.666 20.4 25.126 29.659 36.994	s therefore 4003 4.786 4.876 4.44 3.892 4.166 4.855 5.051 5.082 7.22	not expect 4005 3.383 3.37 3.169 2.928 3.097 4.301 5.286 5.123 8.409	ed to matcl 4006 2.894 2.748 2.604 2.45 2.429 2.964 4.182 4.438	n extracte 5003 15.311 15.05 14.682 13.79 13.429 15.279 21.686 25.752 36.422	d for grid s dons for cat 6007 49.611 44.97 41.929 40.061 38.31 37.34 42.531 59.114 80.528	1.967 1.817 1.712 1.616 1.558 1.754 2.216 2.561 4.463	vith heavily 7001 6.127 5.987 5.704 5.096 4.688 5.262 6.19 6.893 11.712	y modified to 7002 11.343 9.578 8.942 8.66 8.113 7.404 7.298 8.027 8.951	7003 1.162 1.107 1.054 1.021 1.007 0.993 0.956 0.903 0.854	es or small 7005 1.233 1.131 1.056 1.033 1.027 0.977 0.903 0.873 1.045	7006 4.998 4.725 4.748 5.212 5.97 6.038 5.9 5.284 5.101	4.998 4.725 4.748 5.212 5.97 6.038 5.9 5.284 5.101
16 17 18 19 20 21 22 23 24 25 26 27 28	model_ YYYY 1990 1990 1990 1990 1990 1990 1990 1990	MIP_ MM 1 1 1 1 1 1 1 1	notes: DD 1 2 3 4 5 6 7 8 9 10	G2G simul 1001 0.912 0.897 0.815 0.72 0.654 0.605 0.562 0.588 0.781 0.946	2001 8.194 7.6 7.224 6.941 6.704 6.463 6.338 7.123 9.055 11.206	2002 6.024 5.51 5.197 4.885 4.746 4.625 4.562 5.414 7.5 9.225	s on a 1km 3003 6.262 5.938 5.733 5.364 5.205 5.67 7.25 8.742 11.109 16.567	grid and is 4001 24.08 22.912 21.926 20.639 19.666 20.4 25.126 29.659 36.994 59.573	s therefore 4003 4.786 4.876 4.44 3.892 4.166 4.855 5.051 5.082 7.22 10.151	not expect 4005 3.383 3.37 3.169 2.928 3.097 4.301 5.286 5.123 8.409 11.228	ed to matcl 4006 2.894 2.748 2.604 2.45 2.429 2.964 4.182 4.438 7 10.296	n extracte n observat 5003 15.311 15.05 14.682 13.79 13.429 15.279 21.686 25.752 36.422 50.461	d for grid s dons for cat 6007 49.611 44.97 41.929 40.061 38.31 37.34 42.531 59.114 80.528 123.847	1.967 1.817 1.712 1.616 1.558 1.754 2.216 2.561 4.463 5.346	vith heavily 7001 6.127 5.987 5.704 5.096 4.688 5.262 6.19 6.893 11.712 17.066	y modified to 7002 11.343 9.578 8.942 8.66 8.113 7.404 7.298 8.027 8.951	7003 1.162 1.107 1.054 1.021 1.007 0.993 0.956 0.903 0.854 0.828	es or small 7005 1.233 1.131 1.056 1.033 1.027 0.977 0.903 0.873 1.045 1.459	7006 4.998 4.725 4.748 5.212 5.97 6.038 5.9 5.284 5.101 7.054	4.998 4.725 4.748 5.212 5.97 6.038 5.9 5.284 5.101 7.054
16 17 18 19 20 21 22 23 24 25 26 27 28 29	model_ YYYY 1990 1990 1990 1990 1990 1990 1990	MIP_ MM 1 1 1 1 1 1 1 1	DD 1 2 3 4 5 6 7 8 9 10 11 12	G26 simul 1001 0.912 0.897 0.815 0.72 0.654 0.605 0.562 0.588 0.781 0.946 0.84	2001 8.194 7.6 7.224 6.941 6.704 6.463 6.338 7.123 9.055 11.206 10.926	2002 6.024 5.51 5.197 4.885 4.746 4.625 4.562 5.414 7.5 9.225 8.83	s on a 1km 3003 6.262 5.938 5.733 5.364 5.205 5.67 7.25 8.742 11.109 16.567 20.172	grid and is 4001 24.08 22.912 21.926 20.639 19.666 20.4 25.126 29.659 36.994 59.573 68.419	s therefore 4003 4,786 4,876 4,44 3,892 4,166 4,855 5,051 5,082 7,22 10,151 9,027	not expect 4005 3.383 3.37 3.169 2.928 3.097 4.301 5.286 5.123 8.409 11.228 9.427	ed to matcl 4006 2.894 2.748 2.604 2.45 2.429 2.964 4.182 4.438 7 10.296 9.327	n extracte n observat 5003 15.311 15.05 14.682 13.79 13.429 15.279 21.686 25.752 36.422 50.461 44.678	d for grid s ions for cat 6007 49.611 44.97 41.929 40.061 38.31 42.531 59.114 80.528 123.847 158.13	1.967 1.817 1.712 1.616 1.558 1.754 2.216 2.561 4.463 5.346 4.351	vith heavily 7001 6.127 5.987 5.704 5.096 4.688 5.262 6.19 6.893 11.712 17.066 13.201	y modified to 7002 11.343 9.578 8.942 8.66 8.113 7.404 7.298 8.027 8.951 14.164 20.87	7003 1.162 1.107 1.054 1.021 1.007 0.993 0.956 0.903 0.854 0.828 0.817	es or small 7005 1.233 1.131 1.056 1.033 1.027 0.977 0.903 0.873 1.045 1.459	7006 4.998 4.725 4.748 5.212 5.97 6.038 5.9 5.284 5.101 7.054 7.582	4.998 4.725 4.748 5.212 5.97 6.038 5.9 5.284 5.101 7.054 7.582
16 17 18 19 20 21 22 23 24 25 26 27 28 29	model_ YYYY 1990 1990 1990 1990 1990 1990 1990	MIP_ MM 1 1 1 1 1 1 1 1 1 1 1	notes: DD 1 2 3 4 5 6 7 8 9 10 11 12 13	G26 simul 1001 0.912 0.897 0.815 0.72 0.654 0.605 0.562 0.588 0.781 0.946 0.84	2001 8.194 7.6 7.224 6.941 6.704 6.433 7.123 9.055 11.206 10.926	2002 6.024 5.51 5.197 4.885 4.746 4.652 5.414 7.5 9.225 8.83 7.894	s on a 1km 3003 6.262 5.938 5.733 5.364 5.205 5.67 7.25 8.742 11.109 16.567 20.172 16.957	grid and is 4001 24.08 22.912 21.926 20.639 19.666 20.4 25.126 29.659 36.994 59.573 68.419 60.934	s therefore 4003 4.786 4.876 4.44 3.892 4.166 4.855 5.051 7.22 10.151 9.027 7.944	not expect 4005 3.383 3.37 3.169 2.928 3.097 4.301 5.286 5.123 8.409 11.228 9.427 7.581	ed to matcl 4006 2.894 2.748 2.604 2.45 2.429 2.964 4.182 4.438 7 10.296 9.327 7.634	n extracte n observat 5003 15.311 15.05 14.682 13.79 13.429 15.279 21.686 25.752 36.422 50.461 44.678 35.899	d for grid s ions for cat 6007 49.611 44.929 40.061 38.31 37.34 42.531 59.114 80.528 123.847 158.13	6008 1.967 1.817 1.712 1.616 1.558 1.754 2.216 2.561 4.463 5.346 4.351 3.762	vith heavily 7001 6.127 5.987 5.704 5.096 4.688 5.262 6.19 6.893 11.712 17.066 13.201	y modified to 7002 11.343 9.578 8.942 8.66 8.113 7.404 7.298 8.027 8.951 14.164 20.87	7003 1.162 1.107 1.054 1.021 1.007 0.993 0.956 0.903 0.854 0.828 0.817 0.814	ses or small 7005 1.233 1.131 1.056 1.033 1.027 0.977 0.903 0.873 1.045 1.459 1.34 1.039	7006 4.998 4.725 4.748 5.212 5.97 6.038 5.9 5.284 5.101 7.054 7.582 6.669	4.998 4.725 4.748 5.212 5.97 6.038 5.9 5.284 5.101 7.054 7.582 6.669

Figure 1. Example of a model output file in .csv format.

4. Where to put results and how they will be analysed

JASMIN storage for model outputs is available, for the main runs at:
/gws/nopw/j04/hydro_jules/data/uk_hydro_mip/main/ and for the optional extra runs at
/gws/nopw/j04/hydro_jules/data/uk_hydro_mip/optional_extra/. To access this space
users will need to be members of the Hydro-JULES group workspace. JASMIN users can
apply to join if necessary (follow the guidance here: https://help.jasmin.ac.uk/docs/short-term-project-storage/apply-for-access-to-a-gws/, and please mention the MIP). If
participants are not JASMIN users, please contact the team to make alternative
arrangements for uploading model outputs (hydrojules@ceh.ac.uk).

We will run analysis against NRFA daily flow data and make the analysis and analysis tools available to all MIP contributors.

We will evaluate flows using a range of metrics and hydrological signatures, over both the 30-year and 10-year simulation periods. These will include summary metrics such as the Kling Gupta efficiency and Nash-Sutcliffe efficiency, alongside analysis of annual/seasonal bias, flow variance, correlation, flow quantiles, peak flow timing and magnitude.

5. Getting involved

This MIP will pull together river flow outputs from a wide range of UK hydrological models, generating a valuable dataset. Our analysis of these outputs will help to inform understanding of hydrological process representation in models across flow regimes and catchment types. We will gather model outputs from participants through 2025 and begin analysis in 2026. If you have a model which is suitable for inclusion in the MIP, or any other queries, please contact us on <a href="https://hydrological.new.google.com/hydrological.new.

6. Guidelines

Participants involved in the MIP are committing to the following guidelines:

- To understand and follow the modelling protocol, including the guidance on submitting model data and meta-data (see section 0).
- To ensure the suitability of their model and to conduct required internal quality checks before submission.
- To submit model output according to the prescribed timelines.
- All submitted data will be made openly available (with the expectation of appropriate citation in the MIP outputs and any future use).
- To be available to provide additional information on their model and setup as required for the MIP output publication.

7. Optional extras: alternative PE

A key component of the Hydro-JULES MIP is that we require all models to be run with the same driving data. This will allow us to explore the relative strengths of different modelling approaches, focusing on how differences in process representation and model resolution impact modelled flows. We have selected CHESS-PE as the potential evapotranspiration (PE) product to be used in the MIP, as it is accompanied by the CHESS-met dataset which contains the variables required to run the JULES model.

However, we recognise that the choice of driving data will impact flows and other models may have been calibrated based on other PE products. The impact of driving data on modelled flows is also an interesting question. We therefore invite modellers who have submitted outputs following the main MIP protocol to submit a second set of runs using Hydro-PE. The protocol for this second set of model outputs is outlined below.

Temporal extent: The Hydro-PE HadUK-Grid product is available until 2022. We therefore propose running models from 1990 to 2022 inclusive when using Hydro-PE HadUK Grid. This extended period will still allow comparison with the main MIP over 1990-2019, while also covering the 2021/2022 drought.

Spatial extent, calibration and model setup: the model should be run over the same catchments and following the same guidelines for model setup as outlined in the main MIP protocol.