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Land surface model, as a component of climate system modelling

Land is an important component of climate system and carbon cycle of the Earth.
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Hajima et al. 2014, PEPS [concept of MIROC-ESM]

Most land processes can be represented as 1D vertical flux exchange



River freshwater transport for ocean dynamics simulation

In addition to 1D vertical fluxes, some horizontal water dynamics processes are
important for climate system modelling.
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Freshwater runoff from river to oceans alter salinity and water
temperature, and impact ocean thermohaline circulation
(which is driven by sea water density).
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TEMPERATURE records from Greenland ice cores'” suggest that
large and abrupt changes of North Atlantic climate occurred fre-
quently during both glacial and postglacial periods; one example
is the Younger Dryas cold event. Broecker’ speculated that these
changes result from rapid changes in the thermohaline circulation
of the Atlantic Ocean, which were caused by the release of large
amounts of melt water from continental ice sheets. Here we
describe an attempt to explore this intriguing phenomenon using
a coupled ocean—atmosphere model. In response to a massive sur-
face flux of fresh water to the northern North Atlantic of the
model, the thermohaline circulation weakens abruptly, intensifies
and weakens again, followed by a gradual recovery, generating
episodes that resemble the abrupt changes of the ocean—atmos-
phere system recorded in ice and deep-sea cores®. The associated
change of surface air temperature is particularly large in the nor-
thern North Atlantic Ocean and its neighbourhood, but is relatively
small in the rest of the world.

River routing scheme had been
implemented to A-O Coupled GCM
since 1990s.

Thermohaline circulation had been
simulated in coupled climate models.

Impact of freshwater runoff on climate
system had been discussed.

Horizontal water transport on land is
important for climate system model.



Global biogeochemical cycle related to surface water dynamics
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In this study, we will review:

1] Recent activities on modelling horizontal water dynamics in land models

[2] How each horizontal process relates to climate and biogeochemistry

[3] What are difficulties and challenges in modelling horizontal water dynamics processes



Recent advances in
modelling horizontal water dynamics on land



Floodplain inundation: Key improvement in river routing process

Water excess above channel causes floodplain inundation.
- Flood peak attenuation and delay.

- Water surface area expands

- Highly corresponds to flood hazard and risk

Many river models with floodplain schemes developed in recent 20 years.
First attempt to simulate Amazon’s flood inundation dynamics within large-scale river
model. (IBIS-HYDRA model, Coe et al., 2002, JGR)

- Sub-grid floodplain parameterization using topography data

(THMB, Coe et al. 2008, HP; ISBA-TRIP; Ducharme et al., 2008 JGR)
, === =8 - Physically-based representation of flood inundation dynamics
Amazon river fromIS, b;NAA (CaMa-Flood, Yamazaki et al. 2011; MGB-IPH, Paiva et al. 2011)
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- Global flood models for risk assessment purposes
(PCR-GLOBWB, Winsemius 2013; LISFLOOD-FP Global, Sampson 2015)
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Figure 11. Time series of simulated mean monthly flooded area in the Amazon River basin for the

period 1939—1998. Shading indicates the fraction of the 5" grid cell covered with water; black being
100% flooded.

First large-scale flood inundation simulation [Coe et al. 2002, JGR] ISBA-TRIP; Ducharme et al., 2008 CaMa-Flood, Yamazaki et al. 2011



Physically-based representation of river-floodplain hydrodynamics

Realistic simulation is achieved (e.g. CaMa-Flood / MGB-IPH).
- Using high-resolution river topography (e.g. MERIT Hydro)
for sub-grid parameters delineation, with catchment-based approach.
- Realistic relationship between water storage and water level+extent.
- More physically-based flow equation (shallow-water equation)

- Realistic simulation of discharge, water level, flood extent
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Conceptual river representation to enhance system interactions

Conceptual representation focuses more on system interactions.

- Extract essence of river-floodplain dynamics.

- Reasonably simplify each process, but consider interaction among
systems. e.g. ORCHIDEE routing (Guimberteau 2012)

- Much easy to represent interactions with other systems (soil,
atmosphere, carbon cycle), compared to physically-based approach.
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Water flux calculation scheme in ORCHIDEE (Guimberteau et al. 2012)
considering river-swamp-floodplain links and interaction with soil & atmosphere
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Water & carbon flux scheme in ORCHILEAK (Lauerwald et al. 2017).
Carbon transport is considered in addition to water flux.




Hillslope hydrology: local-scale process in global modelling
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Landscape regulated by hillslope hydrology [Fan et al, 2019]

Moisture redistribution in hillslope is a recent hot topic.

- Valley is wetter, hilltop is dryer. Due to sub-surface water flow.

- Vegetation cover can be different due to different moisture condition.
(Forested valley in water limit region. Water logging in wetlands).

Land cover heterogeneity due to hillslope moisture dynamics

could be underrepresented in current Land Surface Models.
- Land-atmosphere interaction might be affected.
- Efforts ongoing on modelling hillslope hydrology in global land model
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(f) HAND bins represented in model
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Hillslope hydrology: local-scale process in global modelling

Conceptual representation of hillslope hydrology (Chaney et al. 2016)

- Consider water movement from hilltop to downvalley
- Represent land cover difference and different response to atmospheric forcing

- In wetter valley: higher soil moisture + larger latent heat.
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Landscape regulated by hillslope hydrology [Fan et al, 2019]



Hillslope hydrology: local-scale process in global modelling

Physically-based representation of hillslope hydrology (Swenson et al. 2019)

- Explicitly represent sub-surface lateral water dynamics using hillslope column.

- Ground water level in each hillslope column calculated explicitly

- Physically-based horizontal water dynamics (Darcy’s law), including interaction with river water.

- Realistic representation of runoff-generation process, in addition to hillslope moisture redistribution.
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Ground water dynamics: another hot issue in land modelling

Modelling horizontal ground-water dynamics
- Large-scale groundwater flow, in addition to hill-slope scale lateral flow.
- Modelling effort at multiple special scales, considering interaction with soil and vegetation.
- Both physically-based approach and conceptualized approach are used.
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Groundwater flow in
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[Fan et al. 2013]
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Challenges in
modelling horizontal water dynamics on land



How can we handle land heterogeneity?

Hyper-resolution approach

- Relatively easy to develop model (though horizontal dynamics should be added to classical 1D model).
- High computational cost might limit coupling with climate models.

Medium-resolution with sub-grid physics approach

- Computationally efficient and coupling to climate models becomes relatively easy.

- Appropriate discretization land surface into calculation unit is needed (catchment, hill-slope, land cover)
- Difficult to develop an appropriate sub-grid approximation of complex process.
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Physically-based representation or Conceptual representation

Physically-based representation
- Realistic representation of water dynamics
(water level, flood extent)
- Comprehensive model evaluation using
more variables (in addition to discharge)
- Required appropriate sub-grid modelling
and high-precision topo/soil datasets
- Complex model makes mode coupling difficult?

CaMa-Flood: Yamazaki et al. 2011; Zhou et al. 2021

Conceptual representation approach
- Extract essence of processes with simple equations
- Focuses more on system interactions.
(surface water & soil, vegetation, carbon, etc).
- Less calculation cost, easy to couple with climate model?
- Water dynamics (level, extent) are usually simplified,
and direct comparison to observations are difficult.

Q™=0 Q=0 Q=0

Water flux calculation scheer“min ORCHIDEE,
Guimberteau et al. 2012



Needs on horizontal water scheme as a part of LSM/GCM/ESM

Both “realistic water dynamics” & “flexible coupling with other ESM process” are needed.
- Biogeochemical processes are regulated by water level (plant root, wetland carbon cycle)
Without modelling water level dynamics, projection of future biogeochemical process could be wrong.
- System interaction representation in global land/climate model is essential to understand Earth system.
Without model coupling, we cannot evaluate the impact of hydrological processes on biogeochemistry

(a) Drained land (b) Inland waters (c) Flooded land
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Functional differences of carbon metabolism and hydrological export
in well-drained and flooded land.

Abril & Borges, 2019, Biogeosciences Decharme et al, 2019



Wrap-up & inputs for discussions

Horizontal water dynamics on land is an important component of Earth’s climate system.

- Efforts are ongoing to better represent horizontal water dynamics
(River and floodplain dynamics, hillslope lateral flow, groundwater flow, in addition to vertical water flux)

1: Vertical flux at calculation unit

Modelling hillslope lateral flow in LSM is interesting/important.
ﬁ 2: Horizontal flow - Land water dynamics finally becomes 3-Dimentional
alongrivernetwork ' Hyiislope flow physically connects 1D soil water budget with
runoff generation and river-soil water interactions.
- Related to key ecosystem processes related to carbon cycle
(groundwater and vegetation root, water table dynamics in wetlands)

Integrated Land
Simulator (ILS)

3: Horizontal flow
along hillslope

AGCMs
MIROC, NICAM, etc.

Integrated Land Simulator
New coupling framework for
land components & climate model SN © Srow couer parameteriaation

Various modelling approaches exists. e
- Hyper-resolution, or Sub-grid physics in medium resolution. ’
- Physically-based representation for higher accuracy,

or conceptual representation for flexible coupling.

+  Snow aging with dust/BC
* Formation of snowmelt wetland

Both “realistic water dynamics” & “flexible coupling with ESM process” are needed. | _tmemmes s J 44
- Primary target of LSM is to represent land processes important for climate simulations. T e 4
- We need process-level improvement (e.g. wetland water level & extent) and comprehensive coupling (ecosystem + carbon)
- Moreover, fully coupling recently-developed land hydrology processes to GCM/ESM is essential

to understand which process is important for climate projections.

endorced by IPCC/CMIP6
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