

0

NUTRIENT CYCLE PROCESSES: WHERE ARE WE NOW & WHERE DO WE NEED TO GO?

Sönke Zaehle

with input from:

0 0 0 0 0

0

Renato Braghiere, T Davies-Barnard, Daniel Goll, Lina Mercado, Ryan Knox, Sian Kou-Giesbrecht, David Wårlind, Ying-Ping Wang

																0	0	0	0	
																0	0	0	0	
																0	0	0	•	
																0	0	0	0	
																0	0	0	0	
																0	0	0	0	
																0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
					0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	
					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

COUPLING OF TERRESTRIAL C-N-P CYCLES

Land Biosphere C is organic:

- N needed for enzymes,
- N + P for biochemical reactions
- -> constrained C:N:P stoichiometry

Phosphorus cycle

COUPLING OF TERRESTRIAL C-N-P CYCLES

Nitrogen cycle

Land Biosphere C is organic:

- N needed for enzymes,
- N + P for biochemical reactions

-> constrained C:N:P stoichiometry

N and P are scarce in natural ecosystems

- high costs of biological N fixation
- P is derived from soil weathering

Phosphorus cycle

Carbon cycle

COUPLING OF TERRESTRIAL C-N-P CYCLES

Nitrogen cycle

Land Biosphere C is organic:

- N needed for enzymes,
- N + P for biochemical reactions

-> constrained C:N:P stoichiometry

N and P are scarce in natural ecosystems

- high costs of biological N fixation
- P is derived from soil weathering

Nutrient cycle are leaky

- gaseous and leaching N losses
- P becomes gradually locked in biologically unaccessible forms.

N & P feedbacks between soil processes and vegetation growth

Carbon cycle

INFERRED N LIMITATION IN CMIP5 PROJECTIONS

Projected land C storage

INFERRED N LIMITATION IN CMIP5 PROJECTIONS

Projected land C storage

Zaehle et al. 2015

- Earth system model ensemble minus inferred N constraint
- invididual Earth system models

MAX PLANCK INSTITUTE FOR BIOGEOCHEMISTRY | SÖNKE ZAEHLE | LAND SURFACE MODELLING SUMMIT 2022

CARBON CYCLE FEEDBACKS IN CMIP6

New model structures of C-N models since CMIP5

- show attenuated carbon-cycle feedbacks,
- but with increased C-N model spread

LARGE DIVERGENCE IN MODEL RESPONSES

New model structures of C-N models since CMIP5

- show global carbon & nitrogen cycles generally compatible with standard C-cycle benchmarks
- but diverse responses to forcing changes (N addition, CO₂ increase...)

EFFECT OF STRUCTURAL MODEL UNCERTAINTY

- Ensemble of opportunities rarely give good insights into underlying causes of model spread
- Modular approach needed to test multiple alternatives in a common modelling framework
 <u>Here</u>: 30 alternative N cycles in the OCN framework

Process importance in 2100

INSIGHT FROM PROCESS-PERTURBATIONS

- Long-term dynamics not controlled by controls of IAV
- Clear trade-off in the magnitude of N limitation globally

Technical Challenges:

- ecosystems outside equilibrium
- computational efficiency

INSIGHT FROM PROCESS-PERTURBATIONS

- Long-term dynamics not controlled by controls of IAV
- Clear trade-off in the magnitude of N limitation globally

- ecosystems outside equilibrium
- computational efficiency

OPEN QUESTION: DISTRIBUTION OF N AND P LIMITATION

• Tremendous progress in making more realistic representations of nutrient cycle processes

- Tend to be (much) less restrictive than the first models of this kind
- Can reproduce global benchmarks similar to their C-cycle counter parts
- Have large divergence in terms of the actual effect of nutrient controls

Empirical distribution of N vs P limitation

CHALLENGE: DEFINING NUTRIENT TRADE-OFFS

- How do plants adjust to changes in climate and CO₂ in terms of allocation of nutrients?
 - Important to predict spatial patterns
 - Important to predict ecosystem dynamics
- Dynamic response of plants to nutrient demand to increase below-ground carbon allocation via plant exudation and mycorrhiza vs changes vs respiration vs down regulation of photosynthesis
- Can we use optimality theory to account for these adjustments? At what time and spatial scale?

CHALLENGE: FEEDBACKS BETWEEN VEGETATION AND SOIL

- Soil C turnover responds to increased exudation & mycorrhizal growth with "priming" (enhanced decomposition)
 - This "sometimes" makes nutrients available
- Responses are vegetation/mycorrhiza/soil type specific
 - Challenging to generalise from experiments
 - Challenging to scale up (e.g. global distribution of mycorrhiza)
- BUT: current soil models are giving the wrong answer, simply adding microbial explicit model likely not enough

Results by : Jiang et al. 2020, Nature

CO₂ response in a mature, P-limited Eucalyptus Forest

CHALLENGE: CONTROLS OF NUTRIENT INPUTS

Long-term global N limitation controlled by assumptions about biological nitrogen fixation

- New data on quantifying important fixation controls (MIP by T. Bytnerowicz)
- BUT: Long-term dynamics determined by assumed cap N fixation with excess N demand (nutrient economy, vegetation composition & demography)

CHALLENGE: CONTROLS OF NUTRIENT INPUTS

800

(a)

e soil Pi, g P/m2 700

호 200

Long-term global N limitation controlled by assumptions about biological nitrogen fixation

- New data on quantifying important fixation controls (MIP by T. Bytnerowicz)
- BUT: Long-term dynamics determined by assumed cap N fixation with excess N demand (nutrient economy, vegetation composition & demography)

Uncertainty in P availability due to exchangeability of P rather than total stock

 New data provide a better way towards representation global gradients in exchange capacity

CHALLENGE: COMPREHENSIVE EVALUATION

Nutrient-specific benchmarks

Challenges:

- sparse nutrient cycle observations => community effort to collect relevant data would help...
- compensating model errors hamper interpretation of model biases

CHALLENGE: COMPREHENSIVE EVALUATION

Nutrient-specific benchmarks

Sun et al. 2021

Challenges:

- sparse nutrient cycle observations => community effort
- compensating model errors hamper interpretation of r
- Manipulation studies: separate local from generic effe
- in long-term experiments the response almost aways d

Manipulation experiments

NEW RESEARCH OPPORTUNITIES

- Increased access to observations allows for better informed studies in critical regions
 •AFEX, Amazon-FACE deliver new resources to rethink tropical P-cycle processes
 •New insights into N dynamics in thawing permafrost and subarctic ecosystems
- Coupling of N-P dynamics to vegetation demography and disturbance regimes (fire, ...)
- Trade-offs between nutrient effects on CO₂ storage and other climate drivers (CH₄, N₂O, albedo & water flux, reactive N chemistry and aerosols)
 - Effects of land-use and management
 - Implications of CDR deployment

A NEW BIOSPHERE MODELLING APPROACH

- meristematic control of growth according to water/ nutrient/temperature stresses
- considerings trade-offs to make resource allocation decisions
- novel concepts for soil organic matter processes
 - vertically explicit
 - microbially explicit
 - sorption to stabilise C rather than prescribed turnover
- includes ¹³C, ¹⁴C and ¹⁵N tracers to better constrain processes / improve use of manipulation experiments

