

Parameter Estimation

where we are now and where we want to go

Sept 14, 2022

NCAR

where we are now

where we are now

STATE of CLM

Approximately 200 parameters in CLM5-BGC

many processes, many parameters

PRINCIPLES

- objectivity
- no hand-tuning
- parameters "from the literature"

PRINCIPLES

- objectivity
- no hand-tuning
- parameters "from the literature"

very difficult in practice

PRINCIPLES

- transparent
- reproducible
- effectively leverage available information

parameter optimization

is it cheating?

parameter optimization

basic physics of climate are well-established

full complexity is immense,> parameterizations

parameter optimization

parameter selection is always occurring

should be more transparent!

- 1. Difficult to diagnose structural improvements
- 2. Challenging to incorporate new parameterizations
- 3. Impractical requisite knowledge base
- 4. Doesn't scale well with increasing complexity

- 1. Difficult to diagnose structural improvements
- 2. Challenging to incorporate new parameterizations
- 3. Impractical requisite knowledge base
- 4. Doesn't scale well with increasing complexity

Hand over the reigns to machine learning

Hand over the reigns to machine learning

Hand over the reigns to machine learning

Finding the happy medium

Parameter perturbation experiments

- choose a set of parameters
- vary them strategically
- learn about the model

Parameter perturbation experiments

- choose a set of parameters
- vary them strategically
- learn about the model

leverage knowledge to set parameter values

Ongoing work with CLM

One-at-a-time experiment:

- 200 parameters
- perturbed up and down
- spinup, then run for ten years

w/ Katie Dagon, Dave Lawrence and the CLM PPE WG

Ongoing work with CLM

One-at-a-time experiment:

- 200 parameters
- perturbed up and down
- spinup, then run for ten years

Six scenarios:

- Control (2010 climate/CO₂)
- Hi/low CO₂
- 1850/2100 climate
- + nitrogen deposition

Which parameters have the largest effect on GPP?

NCAR OAAT ensemble overview

Which parameters have the largest effect on GPP?

NCAR OAAT ensemble overview

LAI calibration

- 1. Subset 32 parameters
- 2. Run repeat ensemble
- 3. Discern optimal parameter set(s)

https://doi.org/10.3334/ORNLDAAC/1653

Cost management

1deg= 21013 gridcells 2deg= 5666 gridcells

400 gridcells can reasonably replicate global mean, stdev, and transient model output (see Hoffman et al. 2013, *Landscape Ecology*)

Forrest Hoffmann and Nate Collier

50x reduction from sparsegrid

another >10x reduction via CN-matrix

Lu et al. 2020

2 million pe-hours \rightarrow 3000 simulations (CLM5-PPE)

Parametric uncertainty in the land carbon sink

Parametric uncertainty in the land carbon sink

CLM PPE Coordinated Projects

- Land-atmosphere interactions (Univ Washington)
- FATES PPE (NCAR)
- NEON site calibration (Auburn Univ)
- ET recession timescales (Oregon State)
- Arctic river flow (NCAR)
- Land influence on drought (NCAR)
- Hydrologic sensitivity (Cornell Univ)
- Tropical carbon cycle interannual variability (JPL)
- GPP response to permafrost thaw (NAU)

Conclusions

- We are able to run large ensembles of CLM
 - \circ 2500+ simulations with BGC
 - investing in the infrastructure this easy/repeatable
- Two valuable community datasets
 - o one-at-a-time perturbations (200 params)
 - latin hypercube perturbations [LAI] (32 params)
- PPE working group meets ~monthly
 - email dlawren@ucar.edu to join the list

github.com/djk2120/ppe_tools github.com/djk2120/clm5ppe

Conclusions

- PPE's are a valuable tool for learning about a model
- Optimize computer and human resources
- Need more transparency in model tuning

github.com/djk2120/ppe_tools github.com/djk2120/clm5ppe

djk2120@ucar.edu