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• Hypothesis that an observable quantity tends to optimize some 
criterion of “success” (e.g. costs versus benefits).

• Many criteria are possible.
• Must always be tested against observations.

1 Focus on outcomes, not mechanisms.
2 Biological systems – huge diversity, but unity is imposed by 
natural selection – the “missing law” for LSMs.
3 “Eco” vs “evo”: plasticity (acclimation) vs adaptation

What is an EEO hypothesis?



may also help leaves to avoid transient overheating when wind
speeds fall (Leigh et al., 2012).

Soil fertility effects

A growing number of studies has shown apparently substantial
effects of soil pH on photosynthetic traits (Maire et al., 2015;
Wang et al., 2017; Cornwell et al., 2018). However, the mecha-
nisms involved are not fully understood. Soil pH has often been

considered as an indicator of soil fertility (including cation avail-
ability).

Our analysis shows a clear trend towards higher v on more
acid soils. This is consistent with nutrient acquisition costs
increasing with declining pH (H€ogberg et al., 2006; Janssens
et al., 2010; Ye et al., 2018), and the prediction from least-cost
theory that species should operate at higher v when (all else being
equal) the unit-costs for nutrient acquisition are higher (Wright
et al., 2003). The observed negative influence of soil pH on leaf
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Fig. 4 Trait gradient analyses of key leaf traits. In panels (a–d), species’ trait values (grey dots) are plotted against the community-mean trait value for all
705 species and 116 study sites. Black dashed lines represent the overall regression line, which has a slope of unity by definition. Thin coloured lines
illustrate individual within-species regression lines for species with at least three occurrences. The general tendency from each set of regressions is
summarised in panel (e) with the median slope indicated by a vertical dashed line. Abbreviations: loge LMA, log-transformed leaf mass per unit area
(gm–2); loge Narea, log-transformed leaf nitrogen per unit area (gm–2); loge LA, log-transformed leaf area (mm2); logit v, logit-transformed ratio of
leaf-internal to ambient CO2 (dimensionless).
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• Instantaneous (minutes)
• Acclimation (weeks) – focus in this talk
• Competition (years)
• Migration (centuries)
• Evolution (longer)

1 Acclimation vs species replacement: traits vary in plasticity
2 Plastic: Vcmax, χ (= ci/ca)…
3 Less plastic: leaf area, LMA…

Time scales of EEO responses

Dong et al. 2020 New Phytologist



• Replace PFT-specific parameters with universal parameters 
(more realistic, and a simplification)

• Example: photosynthetic capacity (Vcmax)…
o Usual approach: fix PFT-specific values at 25˚C (Vcmax25) and apply 

the instantaneous temperature response 
o EEO approach: set 2-week moving average of Vcmax25 just large 

enough to use available light (coordination hypothesis)
o Temperature response over the seasonal cycle is less steep, and 

more realistic
o Correct responses to vpd (increase) and eCO2 (decline) follow 

automatically

Practical advantages of EEO



Environmental effects on Vcmax25

Peng et al. (2021) Communications Biology

Predictor for 
Vcmax25

Theoretical 
value

Site-mean 
coefficient
R² = 0.31

ln PPFD 1 1.02 ± 0.21

Tgrowth –0.05 K–1 –0.04 ± 0.01 K–1

ln D 0.07 0.13 ± 0.06 



Peng et al. (2021) Communications Biology

increase in growth temperature is predicted to induce a 5%
decrease in Vcmax25. Regression coefficients of Vcmax25 against the
same climate variables were statistically indistinguishable from
theoretically predicted values (Table 1). Analysis of site-mean
data explained more variance than a mixed-model analysis of all
species (see ‘Methods’), indicating that a greater fraction of var-
iation in photosynthetic capacity can be explained by physical
environmental constraints when considering the whole commu-
nity together, excluding variation within the community. The
response of Vcmax25 to D was slightly steeper in the ‘observed’
than the ‘theoretical’ relationship, but the difference was within

one standard error. From the random term of the all-species
mixed model (see ‘Methods’), species and site identity separately
accounted for 22 and 50% of the variation in Vcmax25 that was
unexplained by the model’s climate variables (Table S1).

No significant bias was shown for the predicted relationship of
Vcmax25 to PPFD, Tg or D (Fig. 2). There was a possible under-
estimation of Vcmax25 at higher D, but this trend was not sig-
nificant either in all-species (Fig. 2c; p= 0.12) or site-mean
(Fig. 2f; p= 0.09) analyses.

Statistical models of photosynthetic capacity (all species and
site means) as a function of climate overestimated Vcmax25 in low-

Fig. 1 Partial residual plots for Vcmax25 in relation to climate variables. Partial residual plots for log-transformed Vcmax25: all-species (a, b, c) and site-
means (d, e, f). Coefficients and standard errors for the fitted lines are given in Supporting Information Table S4.

Fig. 2 Partial residual plots for the model bias of theoretically predicted Vcmax25 values in relation to climate variables. Partial residual plots for the
model bias of theoretically predicted Vcmax25 values in relation to climate variables: all-species (a, b, c) and site means (d, e, f). Coefficients and standard
errors for the fitted lines are given in Supporting Information Table S4.
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Environmental effects on Vcmax25
…all species (above), site means (below)…



Vcmax – leaf chlorophyll content vs EEO prediction

onemonth’smean temperature<0°C, otherwise as evergreen.This
is a rough approximation that accounts for the fact that herbaceous
biomass commonly turns over annually in cold-winter climates. It
is unrealistic for semi-arid vegetation, but we assume the conse-
quences are minor for global totals. Evergreen, deciduous and
herbaceous vegetation fractions were assigned based on ESA CCI
land cover products at 0.5° resolution (Li et al., 2018). The thermal
growing season was defined as the period with daily mean
temperatures (linearly interpolated between months) > 0°C.
Fig. S2 shows values of τ and LMA used in these calculations.

Mean values of air temperature (T, °C), VPD (D0, Pa) and total
(ΣI0, mol m–2 d–1) and average (I0, μmol m–2 s–1) PPFD during
the thermal growing season were calculated based on the CRU
TS4.3 climate data for 1982–2016 at 0.5° resolution. Mean
daytime air temperature was estimated from daily temperature
maxima and minima by sinusoidal interpolation. Three historical
simulations were performed: (1) all factors (CO2, climate) varied;
(2) climate varied, with CO2 fixed at 340 ppm (its value in 1982);
and (3)CO2 varied, with climate variables fixed at theirmean values
from 1982 to 2016. The Theil–Sen regression slopes were fitted to
indicate the direction and magnitude of the trends. The Theil–Sen
regression slope is themedian slope of all straight lines joining pairs
of data points and provides a robust estimate that is less sensitive to
outliers than ordinary least-squares linear regression. The Theil–
Sen regressionwas implemented using the ‘spatialEco’ package inR.
Segmented regressions (‘segmented’ package) were applied to assess
the timing of breaks in the time series of predicted canopy-level N
demand based on each of the LAI data products. We also mapped

the spatial pattern of the historical simulation based on CO2,
climate and LAI. All analyses and graphics were developed in R.

Results

The global pattern of predicted Vcmax at growing-season temper-
ature (Fig. 2a) shows good general agreement with satellite LCC-
derived Vcmax (Fig. 2b) (r= 0.56, P < 0.001). There is underes-
timation in predominantly cropland areas in interior North
America, Europe and East Asia. The LCC-derived Vcmax for
croplands depends on a cropland-specific conversion factor
between LCC and Vcmax; our model did not distinguish crops
from other plants and therefore might underestimate Vcmax in
croplands (which can be influenced by fertilization and irrigation,
as well as varietal selection). The spatial correlation increased to
r= 0.63 after excluding croplands. There are a number of specific
differences between the predicted and observed maps that we do
not explore here.However, there are notable, large-scale geographic
features in common, including a belt of exceptionally high values in
the Sahel (consistent with recent measurements by Sibret et al.,
2021), high values in north-western India and steep declines north
of 50°N. All of these features were already shown in the global map
of predicted optimalVcmax presented by Smith et al. (2019). Fig. 2
demonstrates that they are present in nature and observable from
space.

During the period from 1982 to 2016, CO2 increased by
58.5 ppm and global mean land temperature by 0.5°C. Predicted
Vcmax at growing-season temperature generally increased, while
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Fig. 2 Global distributions of (a) satellite-
derived Vcmax (Vcmax,chl, μmol m–2 s–1) from
leaf chlorophyll content and (b) predicted
Vcmax at growth temperature during the
period from 2003 to 2012.
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Mengoli et al. (2021) JAMES

Separation of time scales => diurnal cycles of GPP
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Ball-Berry χ =  1  – 1/mh
Leuning χ =  f0 (1  – D/D00) where D00 =  D0 (α – 1),

and f0 =  1 – 1/α
Medlyn* χ = g1/(g1 + √D)

*g1 for PFTs: Lin et al. (2012) Nature Climate Change

green quantities are PFT-specific parameters

Stomatal behaviour: current models



Plants must transport water in order to take up CO2

Least-cost hypothesis: minimize a (E/A) + b (Vcmax/A)

χ = γ +   (1 – γ) ξ/(ξ + √D)  ≈    ξ/(ξ + √D)
where
γ  =  Γ*/ca and ξ =  √(bK/1.6a)

b is constant
a declines with temperature (due to viscosity)

1 Both can be estimated from independent data
2 Strong (acclimated) effects of temperature and elevation on ξ

An EEO model

Prentice et al. (2014) Ecology Letters



Quantitative effects on χ:
predictions versus data (leaf δ13C)

predicted* fitted 
(by theory) (by regression)

temperature (K) 0.054 0.052 ± 0.006
ln vpd –0.5 –0.55   ± 0.06
elevation (km) –0.08 –0.11   ± 0.03

*calculated as per previous slide, and logit-transformed

Wang et al. (2017) Nature Plants
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Wang et al. (2017) Nature Plants



A new strategy: In sharp contrast to current model development practice, our approach depends on the 
extensive use of observational and experimental data in a “strong inference” framework whereby optimality 
hypotheses are explicitly formulated and tested one-by-one. Below, we provide a selection of examples 
where this strategy has been applied at the leaf (1–5), plant (6) and ecosystem (7–8) scales. They illustrate 
the remarkable power of the eco-evolutionary optimality principle to predict patterns observed in nature. 

1 (left): The ratio of leaf-internal to 
ambient CO2 (χ) depends on the 
stomata, which open or close to 
regulate CO2 intake and water loss. 
Trends in χ are reconstructed here from 
stable carbon isotope ratios in tree 
rings6. Current ESMs rely on stomatal 

equations based on humidity or vapour pressure deficit (vpd) alone. Theory based on the hypothesis that 
plants minimize the sum of unit costs for carbon fixation and water transport7, however, correctly predicts 
variations in χ with growth temperature (Tg), vpd (Dg), ambient CO2 (ca) and elevation (z). Coloured lines, 
individual records; black lines, predictions6. 

2 (left): Field-measured leaf respiration rates (Rd, top) and photosynthetic 
capacities (Vcmax, bottom) (log scales; grey bands) are consistent with 
relationships to growth temperature (mGDD0) predicted by the “coordination 
hypothesis” (photosynthetic capacity adjusts to light availability: black lines). 
ESMs incorrectly assume that they follow the dashed lines, which are based 
on observed instantaneous responses to temperature. The theory however 
predicts acclimated responses, which are what matters on ecological time 
scales9. A realistic land-surface model must consider both time scales, and 
treat them in different ways. 

3 (right): The coordination hypothesis also 
predicts the widely observed decline in photosynthetic capacity (Vcmax) with 
enhanced CO2, and a steep increase with reduced CO2. Βoth responses are 
shown here in an experiment by Hugo de Boer where ambient CO2 and 
phosphorus (P) supply were manipulated. 

4 (left): Optimality implies that low nitrogen (N) 
supply should cause less carbon allocation to 
leaves rather than reduced photosynthesis per leaf. This prediction directly 
contradicts an assumption of many ESMs, but it is supported here in a 
bespoke greenhouse experiment by Nick Smith. 

5 (right): Leaf lifespan 
(LL) depends on leaf 
mass  per area (LMA, gC 
m–2), light (Iabs,  mol m–2 
d–1) and growing-

season fraction (f) as predicted (blue dashed lines) by 
the maximization of leaf carbon gain after accounting 
for construction costs15. Data from the Glopnet trait 
dataset10; theory and data analysis by Han Wang. 

6 (left): Plant emissions of the reactive volatile organic 
compound (VOC) isoprene impact the carbon cycle and 
atmospheric chemistry. Responses of isoprene emission to light, 
temperature and CO2 are all consistent with a linear dependence 
on leaf energetic status, i.e. photosynthetic electron transport (J) 
minus the electron requirement for carbon fixation (JV). The 
simplicity of this rule contrasts with the highly complex, multi-
parameter model11 that most ESMs currently use to predict VOC 
emissions. Experimental data from ref. 12. 
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Jtot ! J ¼ Ajð4Ci þ 8C%Þ=ðCi ' C%Þ Eqn 7

where Aj is the gross assimilation under electron transport-limited
conditions, Ci is the internal CO2 concentration and Γ* is the
compensation point.

The total NADPH cost for isoprene production per mole CO2

assimilated is 1.17 times higher (2.33 NADPH per CO2) than for
sugar synthesis (2 NADPH per CO2), and six molecules of CO2

must be assimilated to produce one isoprene molecule. Drawing a
parallel with the Farquhar model, Jiso is thus estimated as:

Jiso ¼ 6 Iso 1:17 ð4Ci þ 8C%Þ=ðCi ' C%Þ
¼ 7:02 Iso ð4Ci þ 8C%Þ=ðCi ' C%Þ Eqn 8

Combining Eqns 6–8, the overall model for isoprene emission
becomes:

Iso ¼ eN J ðCi ' C%Þ=ð7:02 ð4Ci þ 8C%ÞÞ ¼ eN=7:02Aj Eqn 9

Because all our experiments were conducted at a leaf tempera-
ture of 30°C, we neglect the temperature dependence of eN. The
effect of changes in CO2 concentration on eN is adapted from
Arneth et al. (2007):

eN ¼ eNs Ca s=Ca; Eqn 10

where eNs is the fraction of electrons used for isoprene production
under the standard conditions of leaf temperature Ts = 30°C,

PPFD = 1000 lmol m' 2 s' 1 and Ca_s = 390 lmol mol' 1. In this
study, eNs was estimated from experiment by varying PPFD at a
Ca of 390 lmol mol' 1 for P. nigra and 380 lmol mol' 1 for
hybrid aspen.

The Farquhar model

The Farquhar et al. (1980) photosynthesis model describes
the limitations on the C3 photosynthetic rate (A) by two
main equations representing the limitations imposed by Ru-
bisco-catalysed carboxylation (Vcmax) and RuBP regeneration,
which is limited by PPFD and by the maximum electron
transport rate (Jmax). Under Rubisco limited conditions, A is
expressed as:

A ¼ Av ' Rd ¼ VcmaxðCi ' C%Þ=ðCi þ K Þ ' Rd Eqn 11

Av is the gross assimilation under Rubisco-limited conditions,
Rd is the mitochondrial respiration in the light and was assumed
to be equal to dark respiration divided by 2 (Niinemets et al.,
2005; Misson et al., 2010; St Paul et al., 2012). Under electron
transport limitation, A is expressed as:

A ¼ Aj ' Rd ¼ ðJ =4ÞðCi ' C%Þ=ðCi þ 2C%Þ ' Rd Eqn 12

where J is the potential rate of electron transport. J, in turn,
depends on PPFD up to a maximum Jmax (de Pury & Farquhar,
1997). For each Ca, the averaged value of observed Ci was used
for the model simulations.
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Fig. 2 Isoprene emissions vs internal CO2 concentration (Ci) at a leaf temperature of 30°C and a photosynthetic photon flux density of 1000 lmol m' 2 s' 1

for Populus nigra. (a) Observed changes in the fraction of electrons used for isoprene production, taken as the ratio of the isoprene emission rate to the
light-limited electron flux for carbon assimilation (e = Iso/J), in response to changes in the energetic status of the leaf, taken as the difference between the
light- and Rubisco-limited electron fluxes for carbon assimilation [J ' Jv]. (b) Observed (closed circles) and modelled (solid line) isoprene emission rates in
response to changes in Ci. The grey shaded area represents uncertainties of the isoprene model as a result of uncertainties in the values of the maximum
Rubisco carboxylation capacity (Vcmax) and maximum electron flux (Jmax) in the Farquhar model. Error bars represent the maximum and minimum bounds
of the isoprene curve.
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Environmental effects on χ (tree-ring δ13C)

Lavergne et al. (2020) New Phytologist



Interpretation of observations: 
• Example: declining leaf N content (Dong et al. 2022 New 

Phytologist) is not caused by limited N supply, but by rising CO2

and warming.
Projections of the carbon cycle:
• Example: if acclimation is ignored, modelled future GPP and 

land CO2 uptake are too small.

Why does it matter?




