How well-tested eco-evolutionary optimality hypotheses can make land surface models more reliable and robust

Iain Colin Prentice

Georgina Mace Centre for the Living Planet, Imperial College London

Leverhulme Centre for Wildfires, Environment and Society Department of Earth System Science, Tsinghua University

What is an EEO hypothesis?

- Hypothesis that an observable quantity tends to optimize some criterion of "success" (e.g. costs versus benefits).
- Many criteria are possible.
- Must always be tested against observations.

1 Focus on **outcomes,** not **mechanisms.**

2 Biological systems – huge diversity, but unity is **imposed by natural selection** – the "missing law" for LSMs.

3 "Eco" vs "evo": plasticity (acclimation) vs adaptation

Time scales of EEO responses

- Instantaneous (minutes)
- Acclimation (weeks) focus in this talk
- Competition (years)
- Migration (centuries)
- Evolution (longer)

1 Acclimation vs species replacement: traits vary in plasticity 2 Plastic: V_{cmax} , $\chi (= c_i/c_a)$...

Species LA (mm^{_2}) [log_e scale] 3 Less plastic: leaf area, LMA...[®] (b) (a) ω ö Species χ 0.7 0.0 2 Dong et al. 2020 New Phytologist 0 0.50 0.60 0.70 0.80

Plot mean χ

Plot mean LA (mm⁻²) [log_e scale]

Practical advantages of EEO

- Replace PFT-specific parameters with universal parameters (more realistic, and a **simplification**)
- Example: photosynthetic capacity (V_{cmax}) ...
 - Usual approach: fix PFT-specific values at 25°C (V_{cmax25}) and apply the instantaneous temperature response
 - EEO approach: set 2-week moving average of V_{cmax25} just large enough to use available light (coordination hypothesis)
 - Temperature response over the seasonal cycle is less steep, and more realistic
 - Correct responses to vpd (increase) and eCO₂ (decline) follow automatically

Environmental effects on V_{cmax25}

Predictor for V _{cmax25}	Theoretical value	Site-mean coefficient R ² = 0.31
In PPFD	1	1.02 ± 0.21
$T_{\rm growth}$	-0.05 K ⁻¹	-0.04 ± 0.01 K ⁻¹
ln D	0.07	0.13 ± 0.06

Peng et al. (2021) Communications Biology

Environmental effects on V_{cmax25}

...all species (above), site means (below)...

Peng et al. (2021) Communications Biology

$V_{\rm cmax}$ – leaf chlorophyll content vs EEO prediction

Separation of time scales => diurnal cycles of GPP

Mengoli et al. (2021) JAMES

Stomatal behaviour: current models

Ball-Berry
$$\chi = 1 - 1/mh$$
Leuning $\chi = f_0 (1 - D/D_{00})$ where $D_{00} = D_0 (\alpha - 1)$,
and $f_0 = 1 - 1/\alpha$ Medlyn* $\chi = g_1/(g_1 + \sqrt{D})$

*g₁ for PFTs: Lin *et al.* (2012) *Nature Climate Change*

green quantities are PFT-specific parameters

An EEO model

Plants must **transport** water in order to **take up** CO_2 Least-cost hypothesis: minimize $a(E/A) + b(V_{cmax}/A)$

$$\chi = \gamma + (1 - \gamma) \xi / (\xi + \sqrt{D}) \approx \xi / (\xi + \sqrt{D})$$

where
$$\gamma = \Gamma^* / c_a \text{ and } \xi = \sqrt{(bK/1.6a)}$$

b is constant *a* declines with temperature (due to viscosity)

1 Both can be estimated from independent data 2 Strong (acclimated) effects of temperature and elevation on ξ Prentice *et al.* (2014) *Ecology Letters*

Quantitative effects on χ : predictions *versus* data (leaf δ^{13} C)

	predicted*	fitted
	(by theory)	(by regression)
temperature (K)	0.054	0.052 ± 0.006
ln vpd	-0.5	-0.55 ± 0.06
elevation (km)	-0.08	-0.11 ± 0.03

*calculated as per previous slide, and logit-transformed

Wang et al. (2017) Nature Plants

One equation fits all PFTs

Wang et al. (2017) Nature Plants

Environmental effects on χ (tree-ring δ^{13} C)

Lavergne et al. (2020) New Phytologist

Why does it matter?

Interpretation of observations:

 Example: declining leaf N content (Dong *et al.* 2022 *New Phytologist*) is **not** caused by limited N supply, but by rising CO₂ and warming.

Projections of the carbon cycle:

 Example: if acclimation is ignored, modelled future GPP and land CO₂ uptake are too small.

LEMONTREE

Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts

SCHMIDT FUTURES

