Managing model complexity

Charlie Koven, Lawrence Berkeley National Lab

With input from: Rosie Fisher, Jessica Needham, Jennifer Holm, Forrest Hoffman, David Lawrence, Ben Smith, Victor Brovkin, Kei Yoshimura, Andy Pitman, Andy Wiltshire, Vivek Arora, Ben Bond-Lamberty

The thing about models is that they only get more complex over time.

Fisher and Koven, 2020

How do we build models that both:

(a) allow comprehensive assessment of the myriad processes and feedbacks in the land system, and(b) allow controlled experiments, calibration, and understanding?

(a) Process Schematic of a Possible Full-Complexity Configuration of a Land Surface Model

Fisher and Koven, 2020

Several distinct problems introduced by complexity

- Barriers to entry: how can one use a model if one doesn't fully understand all of the processes in it?
- Calibration: how to calibrate models with so many internal feedbacks from many different processes?
- Instabilities: how to prevent one bad prediction in a model from taking down the whole thing?
- Experimental design: how to design simulations to allow one to focus a model on only the desired processes?

One strategy, "modular complexity", might be to build models that can be configurable to either complex or (multiple) simple representations.

Fisher and Koven, 2020

An example of the modular complexity approach: FATES "calibration cascade"

An example of the modular complexity approach: FATES "calibration cascade"

An example of the modular complexity approach: FATES "calibration cascade"

FATES reduced complexity configurations enable calibration cascade

Role of each configuration in calibration cascade and science applications:

An initial benchmarking of ELM-FATES across the complexity cascade

countrul

		somode the the til			
Ecosystem and Carbon Cycle					
Biomass					
Gross Primary Productivity					
Leaf Area Index					
Hydrology Cycle					
Evapotranspiration					
Latent Heat					
Sensible Heat					
Radiation and Energy Cycle					
Albedo					
Surface Upward SW Radiation					
Surface Net SW Radiation					
Surface Upward LW Radiation					
Surface Net LW Radiation					
Surface Net Radiation					

Slide courtesy Jessie Needham

And now some survey results...

Do you routinely run or calibrate your model in different complexity configurations? 8 responses

And now some survey results...

Do you regularly use reduced-complexity LSM configurations (as compared to a CMIP-type configuration) for any of the following use cases?

8 responses

Which aspects of models are configurable versus always on or off?

Conclusions and possible breakout discussion seeds

- Approaches are needed to manage complexity
- Simplified model configurations can be useful for a huge variety of things: calibration, experiments, ...
- Most or all modeling centers are already doing this
- Should we strive to define (more) common reduced complexity configurations and do MIPs, benchmarking or similar around them?
- Are there opportunities for (more) sharing of workflows, reduced-complexity configurations or similar between models?

Thanks!

