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The thing about models is that they
only get more complex over time.

Fisher and Koven, 2020



How do we build models that both:

(a) allow comprehensive assessment of the myriad
processes and feedbacks in the land system, and
(b) allow controlled experiments, calibration, and
understanding?
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(a) Process Schematic of a Possible Full-Complexity Configuration of a Land Surface Model
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Several distinct problems
introduced by complexity

e Barriers to entry: how can one use a model if one
doesn’t fully understand all of the processes in it?

 Calibration: how to calibrate models with so many
internal feedbacks from many different processes?

* Instabilities: how to prevent one bad prediction in a
model from taking down the whole thing?

* Experimental design: how to design simulations to
allow one to focus a model on only the desired
processes?



One strategy, “modular complexity”, might be to
build models that can be configurable to either
complex or (multiple) simple representations.
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An example of the modular complexity

approach: FATES “calibration cascade”

Configuration 2
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An example of the modular complexity
approach: FATES “calibration cascade”
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An example of the modular complexity
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FATES reduced complexity configurations
enable calibration cascade
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Role of each configuration in calibration cascade and science applications:

FATES-

Satellite Phenology

One cohort, observed LA, for each PFT.
No Disturbance, growth, or mortality.

Overall role in science
and calibrations

What variables to
calibrate?

Biophysics and land-
atmosphere exchange. Fast
spinup, few feedbacks.

Leaf traits, soil parameters,
hydraulic conductivities

Prescribed Biogeography = True

nocomp = True

All PFTs given a fixed area to grow.

Growth and disturbance but no competition.

Carbon cycling and
demography in absence of
competition between PFTs
for light

Allometry, allocation,
phenology, growth,
respiration, mortality
parameters

Prescribed Biogeography = True

nocomp = False

Growth, disturbance, and competition, but only
where each PFT actually grows.

Competition of plants,
with some controls over
what PFTs can compete

Environmentally-sensitive
growth and mortality
parameters

Full FATES
Growth, disturbance, and
competition everywhere.

Full dynamics of model

Test of final outcome: does
the model capture observed
patterns?




An initial benchmarking of ELM-FATES
across the complexity cascade
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And now some survey results...

Do you routinely run or calibrate your model in different complexity configurations?
8 responses

@® Yes
® No




And now some survey results...

Do you regularly use reduced-complexity LSM configurations (as compared to a CMIP-type
configuration) for any of the following use cases?

8 responses

Faster runtimes 5 (62.5%)

Accelerated spinup 2 (25%)

Parameter calibration 2 (25%)

State data assimilation and/or f... 2 (25%)
5 (62.5%)

Process isolation for science un...
All of the above, but don't fully u...
Simpler configurations are som...

1 (12.5%)
1(12.5%)
1 (12.5%)
1(12.5%)
1(12.5%)

The older version of the model i...
Not formally - but different versi...
Yes, we do use reduced comple...



Which aspects of models are
configurable versus always on or o

Photosynthesis
Prognostic LAl

Vertical Soil Moisturs
Sub-gridscale tiling

Veg C cycle

Soil C cycle

Plant Hydraulics

Mitrogen Cycle
Phosphorus Cycle
Complex allocation
Permafrost Carbon
Microbes

Peat

Wildfire
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Anthro. disturbance tiling
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River routing model
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Land BGC coupled to river

Land coupled to atm.
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Conclusions and possible breakout
discussion seeds

* Approaches are needed to manage complexity

* Simplified model configurations can be useful for a
huge variety of things: calibration, experiments, ...

* Most or all modeling centers are already doing this

* Should we strive to define (more) common reduced
complexity configurations and do MIPs,
benchmarking or similar around them?

* Are there opportunities for (more) sharing of
workflows, reduced-complexity configurations or
similar between models?
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