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After holding steady from 2014 to
2019 (500-600 million),
undernourishment climbed to
~9.9% of global population in
2020

~768 million people in the world
faced hunger in 2020

(118-161 million more people than
in 2019)
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The Lens of Food Security
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The Lens of Food Security

Global Yield Gaps Calorie Delivery Fraction

Major cereals: attainable yield achieved (%) calories delivered to the food system per calorie produced
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To what end is land being used?
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Land use change

Encourage land modeling efforts to
consider impacts, trade-offs and
co-benefits of LULCC through the
lens food security

How do known sources of
uncertainty limit our understanding
of key climate<->agriculture
interactions?
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Climate change impacts on food security

(C) Modeled Future Rainfed Agriculture Suitability (RCP8.5)
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Models can help assess changing suitability and potential production, and adaptation (e.g. crop
migration).

However, climate -> crop impacts may not consider (or “double count”) important climate <-> crop
feedbacks,
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Global gridded crop models with climate forcing data allow future projections of yield, as well

as an exploration of important crop physiological processes.
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Global distribution of eCO2 experiments on crops and grasslands
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However, much of the detailed management information required comes from industrialized
agricultural zones

E.g. CO2 effects now standard in crop model simulations. Data is lacking for important food
security crops across important growing regions. Recent work also shows losses in
micronutrients (Fe, Zn, etc.)
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Climate change impacts on food security
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Most models still do not capture climate extremes well, much less compound extremes. What we do
know again often comes from where data is more available. However, implications for food security
and adaptation are profound
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Agriculture impacts on Earth Systems and Services
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Agriculture impacts on Earth Systems and Services

@ Cropland
@ Pasture
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Land system change

Modeling community focus on LULCC;
consider for different objectives
(i.e. Half Earth or land sharing)

Harmonized protocols (e.g. LUMIP)
enable more systematic investigations of
the human land management forcing
on Earth systems

Adequately representing many forms of
land management (beyond land cover
change) is a still a major area of model
development
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Agriculture impacts on Earth Systems and Services
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Fresh water use

Models demonstrate irrigation-induced
cooling; may also attenuate heat extremes

More uncertainty surrounding precipitation
and humid heat impacts

Still limitations in estimating
non-renewable irrigation, irrigation limits,
and water closure with irrigation (ongoing
developments to include groundwater)

LUMIP also provided a protocol to assess
irrigation impacts in land-only experiments
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Agriculture impacts on Earth Systems and Services

Soil degradation

How do land management and climate change
impact SOC and on what timescales?

How do soil organic carbon changes impact key
climate and ecosystem processes and services?

Nutrient availability in agroecosystems
Topsoil loss and soil “dust” emissions

A rapidly-developing space for agricultural
C-sequestration, beyond above-ground
terrestrial carbon stocks

Soil erosion 2015 (Mg ha' yr)
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Agriculture impacts on Earth Systems and Services
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e Other dimensions that require exploration include interactions with:

o (Conditions supporting) biodiversity (e.g. land sparing vs land sharing)
o Atmospheric aerosols

o Coastal and aquatic systems

e Counterfactual/baseline for comparison? Potential veg? Conventional ag? Will yield very
different interpretation of results and assessing “benefits”/solution space

e What questions do we want to ask and what level of information/detail is required? Land
management is ultimately embedded in social, political and economic systems whose
uncertainties may supercede even the natural systems we attempt to represent.
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Needs to define solution space

vs Conventional in 2050
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Improved Production

(How) can alternative production contribute to
food security. ..

AND reducing agriculture's environmental
footprint?

IF implemented alongside reducing waste and
shifting diets

More work needed, however, to assess
production potentials - and of what crops? -
under changing climate/environmental
conditions
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C potentials in present-day animal ag lands
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Shifting Diets/Production

How do dietary changes (one
way or another) impact land
cover change, carbon, and
water?

What are co-benefits and
trade-offs, beyond C
sequestration?
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Balancing production and
biodiversity

How will biodiversity and land
conservation strategies impact
food production?

Dietary trends will also matter
for the impact and
implementation of these
scenarios
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Mitigation and Adaptation in Agriculture

==

N ] ]

I |
N
O Climate mitigation
] B Low-cost

O Cost-effective

0O Maximum with safeguards

Other benefits
: I | .
Air
== Biodiversity
] == \Nater
—:n SR
0 0.2 0.4 0.6 0.8 1.0 1.2

SOC mitigation potential in 2030 (GtCO,e yr'1)

There is an increasing push
toward building agricultural SOC
stocks for climate mitigation

Need further development,
process-level constraints, and
Mmanagement representations in
models for SOC investigation

Also need full-cost accounting:
agroecosystem emissions and

productivity alongside measures
of SOC



Food Security and Environmental Goals ((f’

Needs to defined solution space

e Look beyond SSP scenarios to consider co-benefits and trade-offs with respect to
diet/nutrition, (conditions for) biodiversity, and other planetary boundaries

e Coupled modeling with more comprehensive/improved land surface representation will
provide better insight into important climate <-> agroecosystem feedbacks that are
currently lacking in discussion of “potentials”

e Assess efficiencies/intensities and co-benefits/tradeoffs by service to food security
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Thank You

e What data/model developments
are required to assess the
agricultural adaptation and
mitigation space?

e What is needed to expand
“mitigation” purview beyond
carbon?

e How does taking a normative
perspective - foregrounding food
security and ecosystem services -
support novel and impactful
research questions?
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Climate Change Impacts on Agriculture
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