Sub-grid heterogeneity: Where do we go from here?

Nathaniel Chaney, Laura Torres-Rojas, Enrico Zorzetto, and Noemi Vergopolan

Where are we? Focus on sub-grid "tiling" schemes

Example output from land model tiles of a 0.25 degree grid cell

Where are we? Focus on sub-grid "tiling" schemes

I) Recast "tiling" as a clustering exercise

Bring in geomorphological units Define K characteristic/representative hillslopes

Elevation Environmental data **Characteristic hillslopes** Precipitation HAND Temperature Aspect Example: K = 6 1000 1500 2000 500 Precipitatio emperature K-means Hillslopes clustering **Hillslope** properties Chaney et al., 2018

Create "generalizable" approaches to assemble tile configurations

Create "generalizable" approaches to assemble tile configurations

What do approaches like this enable us to do?

Chaney et al., 2021

2) Leverage clustering approaches to "map" the tile results for applications/evaluation

- Leverage one-to-many mapping to produce field-scale estimates
- Remove the modeler excuse of "scale mismatch" when comparing to observations (at least at field scales)
- Assess the level of simulated heterogeneity that is being represented

3) Optimal tile configurations per LSM cell

- Converge on fully distributed field-scale (10-100 m) simulations with anywhere from ~10-1000 tiles. It depends on the timescale and acceptable "threshold"
- Approach to effectively get all the fully distributed model output for a fraction of the cost (1/100-1/10,000)
- Caution: "Optimal" grid cell configurations will require careful load-balancing

4) Evaluate simulated sub-grid heterogeneity

- We keep adding complexity to our tiling schemes but are we actually evaluating the simulated sub-grid heterogeneity?
- Evaluating how the scheme additions impacts the spatial mean of states and fluxes is oversimplistic (right answer for wrong reason)
- Need data this sufficiently high spatial (and preferably temporal resolution) to evaluate time varying sub-grid statistics (e.g., Land surface temperature; LST)

Remote sensing of LST

GOES 16/17(~2 km, hourly)

Landsat 8/9 (~100 m, 8 days)

ECOSTRESS (~70 m, ~4 days)

Sector de la construction de la

LST(K)

GOES-R vs HydroBlocks LST

Evaluate simulated sub-grid heterogeneity II

Copernicus LST - GFDL AM4 (LST spatial variance)

We need to evaluate our simulated sub-grid states (and fluxes)

5) Improve connection of land tiles and atmosphere

- The sub-grid land vs atmosphere model development silos has led to a large disconnect between their respective advances
- Atmosphere does not "feel" sub-grid land surface heterogeneity (e.g., impact of sub-grid heterogeneity on convection mostly non-existent).
- This will matter for many sub-grid land setups including urban/rural, coastal, mountain/valley, antecedent scattered thunderstorms, lake/land, etc...

6) Intertwine routing and tiling schemes

- Hillslope/stream interactions (e.g., ephemeral)
- Move away from predefined "lake tile" designation; move to flooding tiles (and merging/splitting)
- Implications for water management (e.g., surface water abstraction)
- Challenge: Need to reduce number of reaches. Avoid "removing" lower order streams and instead abstract (e.g., cluster)

7) Intra-cell sub-grid tile connections I

HydroBlocks

Chaney et al., 2016

GFDL LM4.2

Chaney et al., 2018

7) Intra-cell sub-grid tile connections II

7) Intra-cell sub-grid tile connections II

7) Intra-cell sub-grid tile connections II

Why stop at subsurface/surface flows? Let's imagine those lower ABL (~surface layer) connections between tiles are driven by wind direction

7) Intra-cell sub-grid tile connections III

7) Intra-cell sub-grid tile connections III

Tile connections would vary with wind direction (learned in preprocessing from tile "maps")

7) Intra-cell sub-grid tile connections IV

Potential applications?

• Fire

. . .

- Blowing snow
- Dust emission/ deposition
- Nutrient transport
- Advection of heat and moisture

8) Inter-cell sub-grid tile connections

- The scale separation of grid/sub-grid breaks is not as clean as we would like
- This becomes more of an issue at higher resolutions (e.g., 10 km grid)
- This will matter for routing, land-atmosphere interactions, groundwater...
- Similar to sub-grid, the connections of tiles across grid cells can be learned in preprocessing (assuming we save the maps of clusters/tiles).
- Caution: The computational complexity that this would add (e.g., MPI message complexity) is doable but certainly not trivial

Ideas for next-generation tiling

- 1. Recast tiling as a clustering exercise
- 2. Leverage clustering approaches to "map" the tile results for applications/evaluation
- 3. Derive optimal tile configurations per LSM grid cell
- 4. Evaluate (more objectively) simulated sub-grid heterogeneity
- 5. Improve interactions between sub-grid land and atmosphere
- 6. Intertwine routing and tiling schemes
- 7. Intra-cell sub-grid tile connections
- 8. Inter-cell sub-grid tile connections