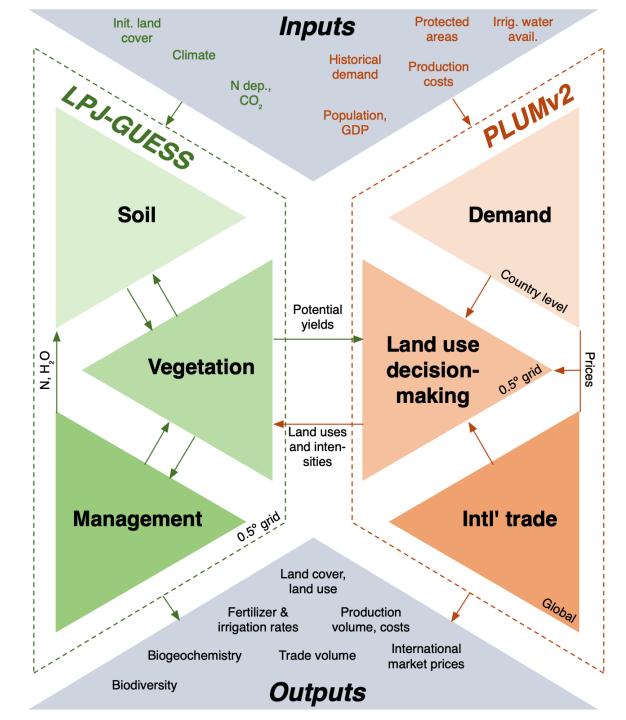
Challenges of simulating agriculture in land models

Sam Rabin

Rutgers University

with thanks to


Jonas Jägermeyr, Danica Lombardozzi, Christoph Müller, and pretty much all preceding presenters GFDL-LM (land-use fire)

LPJ-GUESS (land use, fire)

CLM (crop growing seasons)

Land System Modular Model (LandSyMM)

- Biodiversity (Henry et al., 2019)
- Ecosystem services (Rabin et al., 2020)
- Food prices and health (Henry et al., 2021)

Water (regional)

Regional Forests

Terrestrial Biodiversity

Water Quality (in development)

Global Biomes

Permafrost

Fisheries & Marine

Ecosystems

Coastal Systems Peat (in development) Sarah Chadburn 🖓 😒 Angela Gallego-Sala 🖓 💟

Energy Fluctuations and Extremes

Agro-economic Modelling

Health

Disorganized, incomplete list of challenges

Disorganized, incomplete list of challenges

Modeling is hard

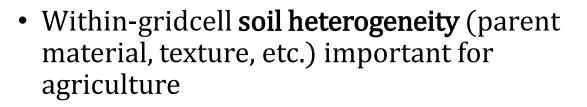
Do we have the inputs?

Are ours the right models?

Modeling is hard

Do we have the inputs?

Are ours the right models?

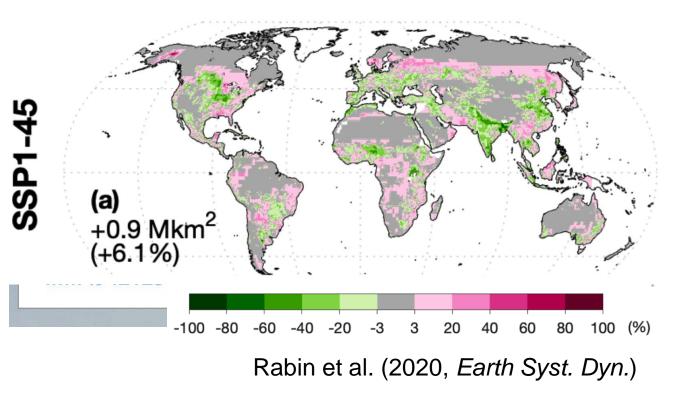

Extreme event impacts

Heat waves, cold snaps/frosts Drought, inundation

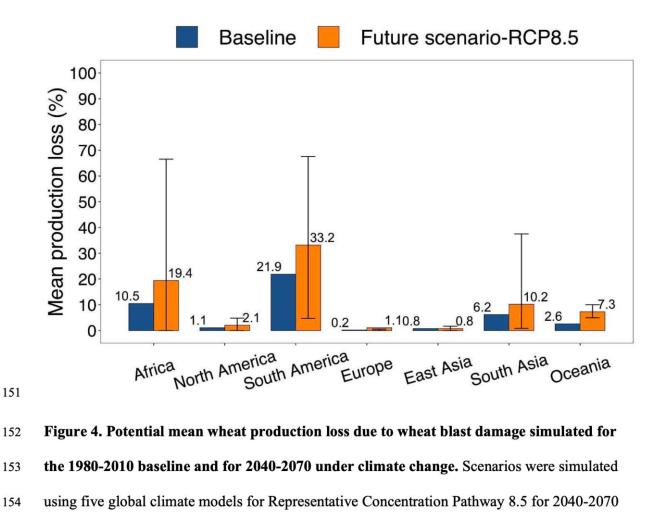
- Wide variety of implementations
- Very empirical
- Sometimes not C-conserving
- **Inundation** isn't just a crop modeling problem

<u>Aa</u> Model	NW	✓ P3	Heat	Cold	Wet	Dry
ACEA			Yes	Yes	Yes	Yes
			No	Yes	No	No
		~	Yes	Yes	Yes	Yes
DSSAT-Pythia			Yes	Yes	Yes	
EPIC-BOKU	~			Yes		
EPIC-IIASA		~	Yes	Yes	Yes	
GEPIC	~			Yes		
ISAM			Yes	Yes	No	
LandscapeDNDC			Yes	Yes	No	
LPJmL			No	No	No	Yes
pDSSAT			Yes	Yes	Yes	
PEPIC	~	~	Yes	Yes	No	
	~	~	Yes	Yes	No	
SIMPLACE-LINTUL5+		~	Yes	No	No	

Soils



- Same for **hydrology**: Tiling becoming more common, but it's expensive
- Limiting nutrients other than N, esp. P (enhanced weathering)
- As agriculture expands poleward—how good are our **permafrost** models?
- How to **spin up** to realistic agricultural soil?
- Are we confident enough to use our models for cropland → water quality work?



Δ cropland area, 2010–2100

Pests, diseases, and weeds

- Need to model not just
 outbreaks/severity of individual
 pests/diseases, but also their
 biogeography
- Lots of variety, **regional variation**
- How to model **"black swan"** new emergence or range jumps?
- Weeds: *Another* kind of plant growing in the same field?

From Pequeno et al. (2022, preprint ?)

Do we have the inputs?

Are ours the right models?

Cropland management

- Multiple growing seasons per year
- Crop rotations
- Intercropping
- Agroforestry

- Integrated crop/livestock systems
- Irrigation techniques, intensity, limits
- Tillage
- Fire (field prep, residue burning)

We can add these, but will we have the data for global runs?

Hard to get observations at global scale.

Future runs: Need for scenarios, collaboration with agro-economic modelers.

Livestock

- Browsers!
- **Definitional uncertainty** in "pasture" vs. "rangeland"
 - Fire use and other field management?
 - Grazing intensity?
- **Biogeochemical impacts** other than plant consumption
 - Manure
 - Ammonia
 - Methane

Do we have the inputs?

Are ours the right models?

More crop types

- The "Big Four" (wheat, maize, rice, soybean) are necessary but insufficient to understand food security
- Fruit & vegetables important for nutrition and as cash crops

Nutritional content

- Protein, micronutrients: Translating production into food security
- Reduced nutrient density with CO₂ fertilization (Smith & Myers, 2018, *NCC*)

Completenutrition.blog

More crop types

- The "Big Four" (wheat, maize, rice, soybean) are necessary but insufficient to understand food security
- Fruit & vegetables important for nutrition and as cash crops
- Regional staple crops (taro, teff, etc.)
- Biofuels—*Miscanthus*, willow coppicing
- Some require modeling of **new structures**
 - Tree crops
 - Perennial herbaceous crops
 - Explicitly model tubers—co-benefits for realism of non-crop PFTs?

More crop *varieties*

- Most models can vary thermal requirement for maturity. (Realistically?)
- Lots of **regional variation** in cultivar needs, availability, and affordability
 - Pest/disease resistance?
 - Drought/heat resistance?
- How to model **introduction of new cultivars**? Scenarios?

Land models vs dedicated crop models

	Land models	Crop models	
Crop structures & phenology	Simplified	Detailed	
# crop types	Fewer	More	

E.g.: ACEA, APSIM, EPIC family, pDSSAT

What questions are we okay with leaving to dedicated crop models?

Can we supplement/replace our crop modules with dedicated crop models?

Some guiding questions

How to prioritize w/ limited team sizes/budgets?

- Which do we need to endogenize (first)?
 - Which are we comfortable leaving to specialized agriculture models?
 - Which are we comfortable leaving impact models to handle in potentially hand-wavy ways?
- How can we engage researchers and developers outside our own groups?

Which challenges would benefit from...

- New remote sensing data?
- Heroic literature reviews?
- Field experiments?
- MIPs—either new experiments or new output analyses?
- Scenario development?
- Coupling with land use / economic models?

