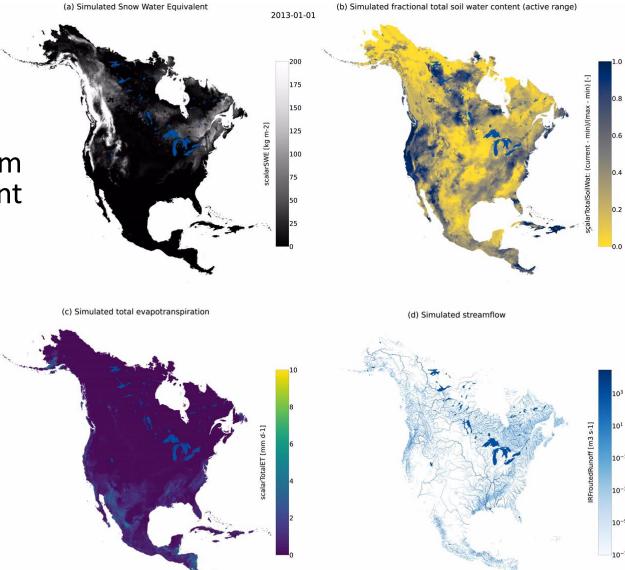


Pathways to better land modelling systems

Martyn Clark

Land Surface Modelling Summit, Oxford, 13 September 2022

Why are land models so terrible?

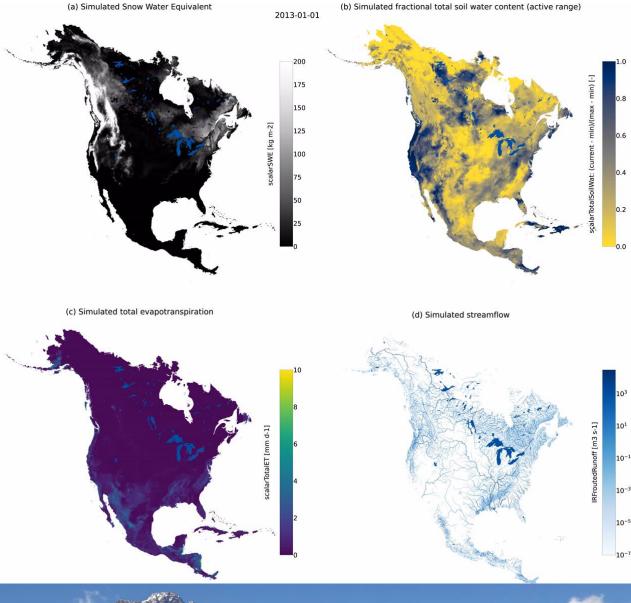

– or –

How can we explain the PLUMBER results?

What we do

- Research goal:
 - Develop <u>numerically robust</u> terrestrial system models that faithfully represent the dominant physical processes across continental domains
- Research foci:
 - □ Flexible model design
 - Robust numerical solutions
 - □ Agile parallelization strategies
 - □ Improved process representations

Problems with hydrological models


- Cumbersome and non-reproducible model workflows
- Unwieldy model structures
- Poor numerical implementation
- Statistically-oriented parameter estimation methods
- Weak model evaluation methods and weak theoretical underpinnings

Common model requirements...

Computational hydrology experiments such as this require:

- Domain discretization (basins and rivers)
- Meteorological data
- Land use data
- Processing of all inputs into the setting files each model requires
- Code to run, calibrate models
- Code to analyze and visualize outputs
- Experiment outcomes (should) lead to new scientific insights and/or management decisions
- 517315 model elements (median 33 km²)
- 40 years of hourly sims
- ~13 TB of input and output data

...but we are all configuring our models in different ways



While models have similar data requirements, they are configured in an individualistic and ad-hoc way

We need <u>reproducible</u> and <u>sharable</u> workflows

- Good scientific practice
- Easier to keep track of work for reporting and paper reviews; easier to collaborate
- Potentially large efficiency gains

@AGU PUBLICATIONS

Water Resources Research

COMMENTARY 10.1002/2016WR019285

Key Points:

 Articles that rely on computational work do not provide sufficient information to allow published scientific findings to be reproduced
 We argue for open reuseable code, data, and formal workflows, allowing published findings to be verified
 Reproducible computational hydrology will provide a more robust foundation for scientific advancement and policy support

Correspondence to:

C. Hutton, chutton294@gmail.com

Citation:

Hutton, C., T. Wagener, J. Freer, D. Han, C. Duffy, and B. Arheimer (2016), Most computational hydrology is not reproducible, so is it really science?, *Water Resour. Res.*, *52*, 7548–7555, doi:10.1002/2016WR019285.

Most computational hydrology is not reproducible, so is it really science?

Christopher Hutton¹, Thorsten Wagener^{1,2}, Jim Freer^{2,3}, Dawei Han¹, Chris Duffy⁴, and Berit Arheimer⁵

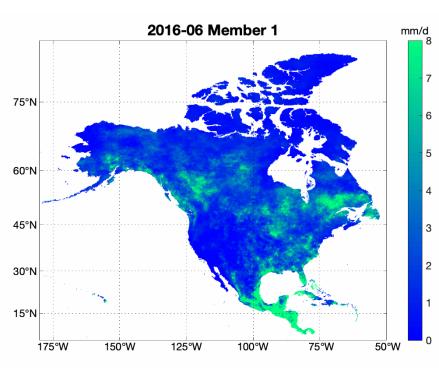
¹ Department of Civil Engineering, University of Bristol, Bristol, UK, ²Cabot Institute, Royal Fort House, University of Bristol, BS8 1UJ, Bristol, UK, ³School of Geographical Sciences, University of Bristol, Bristol, UK, ⁴Department of Civil Engineering, Pennsylvania State University, State College, Pennsylvania, USA, ⁵Swedish Meteorological and Hydrological Institute, Norrköping, Sweden

Abstract Reproducibility is a foundational principle in scientific research. Yet in computational hydrology the code and data that actually produces published results are not regularly made available, inhibiting the ability of the community to reproduce and verify previous findings. In order to overcome this problem we recommend that reuseable code and formal workflows, which unambiguously reproduce published scientific results, are made available for the community alongside data, so that we can verify previous findings, and build directly from previous work. In cases where reproducing large-scale hydrologic studies is computationally very expensive and time-consuming, new processes are required to ensure scientific rigor. Such changes will strongly improve the transparency of hydrological research, and thus provide a more credible foundation for scientific advancement and policy support.

Developing model-agnostic workflows

- Goal: Improve the efficiency of continental-domain model implementation tasks
- Easier to collaborate; easier to keep track of work for reporting and paper reviews
- Increase transparency, reproducibility, and code re-use
- Advance community hydrological modelling, rather than a community hydrological model

😵 master 👻 😵 3 branches 🚫 0	Go to file Add	file ▼
This branch is 27 commits ahead of CH-	Earth:master.	II request 🖹 Compare
wknoben Merge pull request #53	from wknoben/updateCompile 190e121	GitHub repository
0_MA_domain_specification	Updatd merging code for NA MERIT shapefile	On The repository
0_MA_forcing	bugfix of forcing weighting files	E montais ago
0_MA_parameters	Update readme.md	24 days ago
0_MA_tools	re-organized folders to make more sense	3 months ago
1_MS_summa_setup	updated compile scripts for Plato and Graham, add gfortran	5 hours ago
2_MS_experiment_setup	Merge pull request #52 from wknoben/updateTrialParamsSummaV3	last month
		2 months ago


2500

2000

1500

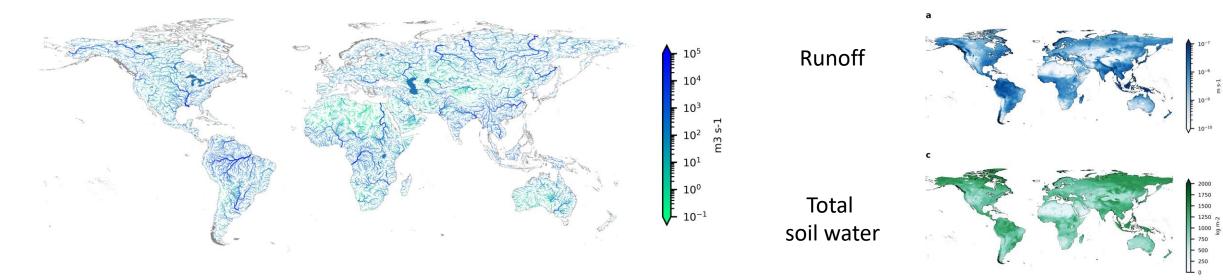
1000

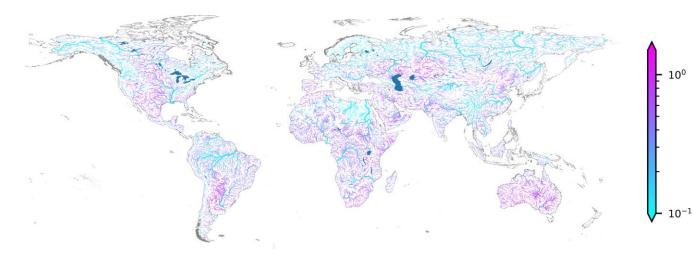
500

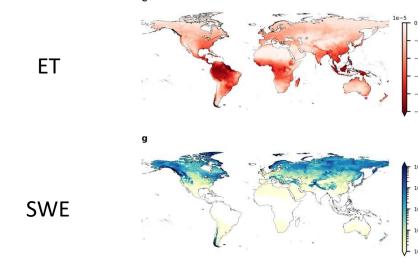
Simulated snow water equivalent [kg m-2]

Streamflow and lake level

Fully reproducible modeling at all scales.. from catchments




... to the globe



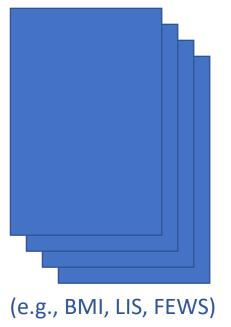
a Mean streamflow

b Mean streamflow **uncertainty ratio**

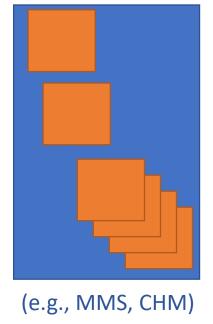
Problems with hydrological models

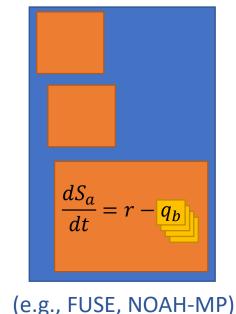
- Cumbersome and non-reproducible model workflows
- Unwieldy model structures
- Poor numerical implementation
- Statistically-oriented parameter estimation methods
- Weak model evaluation methods

Unifying model physics


- The problem: There is a glut of hydrological models (Clark et al., WRR 2011) in many cases there are more models in use than there are algorithms to populate them (same algorithms across multiple models)
- The challenge: How can we define a general master modeling template from which existing models can be constructed and new models derived (Clark et al., WRR 2015)

Hydrological Processes				WATER RESOURCES RI	ESEARCH, VOL. 47, W09301,	doi:10.1029/2010WR009827, 2011		 Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. 	Model Development
Research Article A modular approach to addre parameter estimation issues modelling	in distributed hydrolo	gical YDROLOGICAL PROCESSES lydrol. Process. 21, 2650–2667 (2007) ublished online in Wiley InterScience	hydrologica Martyn P. Clark		d Fabrizio Fenicia ^{3,4}	Hydrol. Earth Syst. Sci., 21, 3953 https://doi.org/10.5194/hess-21-3 © Author(s) 2017. This work is d the Creative Commons Attribution	953-2017 listributed under	The Canadian Hydrological Model multi-extent, variable-complexity l design and overview Christopher B. Marsh ^{1,2} , John W. Pomeroy ^{1,2} , and Howard	nydrological model –
0			ns hydrological model: a platform for basing esentation and model structure on physical evidence				-	n, Canada	
The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements Guo-Yue Niu, ^{1,2} Zong-Liang Yang, ¹ Kenneth E. Mitchell, ³ Fei Chen, ⁴ Michael B. Ek, ³			* D. M. Gray, ^{1†} T. Brown, ¹ N. R. Hedstrom, ² W. L. Quinton, ³ R. J. Granger ² and S. K. Carey ⁴ Available online at www.sciencedirect.com SCIENCE DIRECT ELSEVIER Environmental Modelling & Software 21 (2006) 1402–1415			Environmental Modelling & Software www.elsevier.com/locate/envsoft		water resources research Framework for Understanding Str A modular framework to diagnose between hydrological models	
Michael Barlage, ⁴ Anil Kumar, ⁵ Kevin Mukul Tewari, ⁴ and Youlong Xia ³	n Manning, ⁴ Dev Niyogi, ⁶ Enriqu	e Rosero, ^{1,7}	S.V. Kuma	for high resolutions of the second se	m: An interoperab on land surface mc ard ^b , Y. Tian ^a , P.R. Hc . Eastman ^a , B. Doty ^c , F hell ^d , E.F. Wood ^e , J. Sh	deling puser ^b , J. Geiger ^b , 2. Dirmeyer ^c ,		Martyn P. Clark, ¹ Andrew G. Slater, ² David E. Hoshin V. Gupta, ⁵ Thorsten Wagener, ⁶ and Lau	Rupp, ³ Ross A. Woods, ¹ Jasper A. Vrugt, ⁴ aren E. Hay ⁷
10.1002/2015WR017198 1. Modeling concept Companion to <i>Clark et al.</i> [2015], Martyn P. Clark ¹ , Bart Nijssen ² ,	for process-based hydrologi t Jessica D. Lundquist ² , Dmitri Kavetski ³ , Davi			COMMENTARY	Research	nity Hydrological Model?	e contraction of the second se	hydrologic models Key Points: We seek to increase the physical Martyn P. Clark ¹ , Bettina Schaefli ²	tical underpinnings of process-based
dei:10.1002/2015WR017200. Ross A. Woods ⁵ , Jim E. Freer ⁶ , Ethan D. Gutmann ¹ , Andrew W. Wood ¹ , Levi D. Brekke ⁷ , Jeffrey R. Arnold ⁸ , David J. Gochis ¹ , and Roy M. Rasmussen ¹				10.1002/2014WR016731 Markus Weiler ¹ and Keith Beven ^{2,3,4}			realism of hydrologic models through better way existing theory • We seek to improve the way models • We seek to improve the way models		


Unifying model physics


- Global Water Futures Core Global Water Futures Core
- The problem: There is a glut of hydrological models (Clark et al., WRR 2011) in many cases there are more models in use than there are algorithms to populate them (same algorithms across multiple models)
- The challenge: How can we define a general "master modeling template" (general design principles) from which existing models can be constructed and new models derived (Clark et al., WRR 2015)
- > The challenge: How can we unify model building blocks across multiple levels of granularity

Multiple land models

Multiple model components

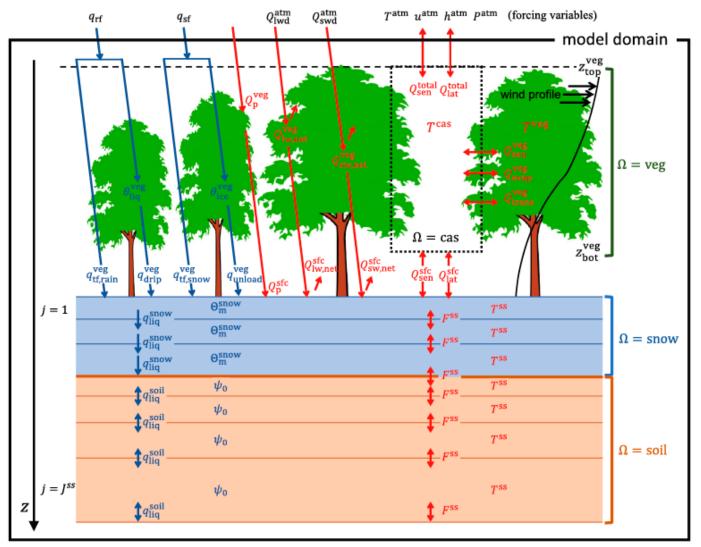
Multiple parameterizations

How do you thread the needle between:

- 1. *Multiple models* that work together in the same framework; and
- 2. Multiple parameterizations that work together in a plug-and-play environment

increasing levels of granularity

Unifying model physics


> A general problem formulation:

Sub-domains

$\Omega = cas$ $\Omega = veg$ $\Omega = snow$	(canopy air space) (vegetation canopy) (snow)
$\Omega = \text{soil}$	(soil)
\Box State equations	
$\frac{\partial \Theta_m^{\Omega}}{\partial t} = -\frac{\partial q_{\rm ice}^{\Omega}}{\partial z}$	$-\frac{\partial q_{\text{liq}}^{\Omega}}{\partial z} + \mathcal{M}_{\text{sink}}^{\Omega}, \Omega = veg, snow, soil$

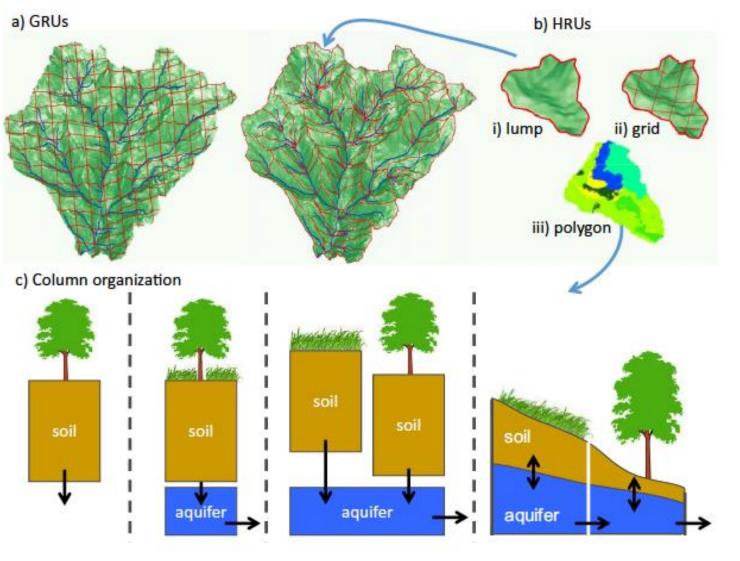
The state-space formulation means that different modeling approaches can be incorporated at multiple levels of granularity

- □ Use different coupled equations for a model sub-domain
- □ Use a different conservation equation for a given state variable (e.g., canopy interception)
- □ Use a different flux parameterization within a given conservation equation (e.g., canopy drainage)
- Use a different numerical method to solve model equations
- Enables systematic scrutiny of modeling alternatives (model hypotheses) in support of evidence-based decision-making

Clark et al. (JHM 2021)

Unifying spatial configurations

> Hierarchical spatial organization


- □ Used in RHESSys, CLM, SUMMA, etc.
- Can reproduce the spatial organization/discretization used in many existing models

GRUs (Grouped Response Units):

- Grid, sub-basin, etc.
- GRUs can be any size or shape (but must be spatially contiguous)

> HRUs (Hydrological Response Units):

- □ Fine mesh, elevation bands, vegetation types, or (more generally) hydrologically similar areas of the landscape
- HRUs can be any size or shape (need not be spatially contiguous)
- □ HRUs can be hydrologically connected

Clark et al. (WRR 2015)

Problems with hydrological models

- Cumbersome and non-reproducible model workflows
- Unwieldy model structures
- Poor numerical implementation
- Statistically-oriented parameter estimation methods
- Weak model evaluation methods

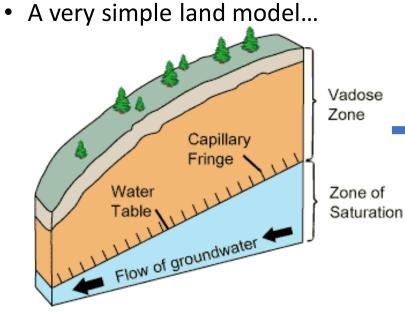
Global Water Futures

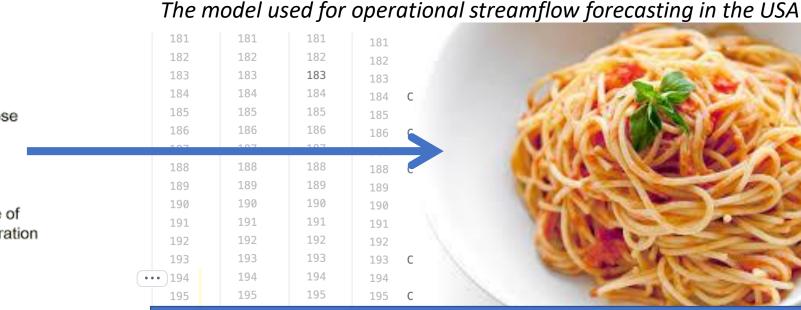
- Operator splitting: It can be very difficult to solve equations simultaneously; most models follow a solution sequence
- Iterative solution procedure: Many fluxes are a non-linear function of the model states; iterative methods can be used to estimate the state at the end of the time step
- Numerical error monitoring and adaptive sub-stepping: Dynamically adjust the length of the model time step to improve efficiency and reduce temporal truncation errors

Consider the example from Woldegiorgis et al. (2022)

$$\frac{\mathrm{d}S}{\mathrm{d}t} = P - Q_d - Q_i \tag{11}$$

$$Q_d = k_d S \tag{12}$$


$$Q_i = k_i S \tag{13}$$


where *P* is precipitation, Q_d is vertical drainage, Q_i is interflow, and k_d and k_i are time constants.

Now consider P = 0 and $k_d = k_i = 0.5$. Given S(t) = 1, computing fluxes successively means that $Q_d = 0.5$ and $Q_i = 0.25$

What is actually done in practice?

• Conservation equations that can be solved elegantly (at least in principle)

$$\frac{dS_1}{dt} = p - q_{sx} - e - q_{12}$$

$$\frac{dS_2}{dt} = q_{12} - q_b$$

Key problems:

- The state updates are sprinkled through the source code like confetti at a wedding... the physical representations are intertwined with the numerical solution.
- The numerical solution is difficult to understand (some basic form of operator-splitting). The time step is not even defined explicitly.
- The numerical solution (time evolution of model states = the state updates) does not take advantage of decades of progress in applied mathematics. We can (and should) do better.

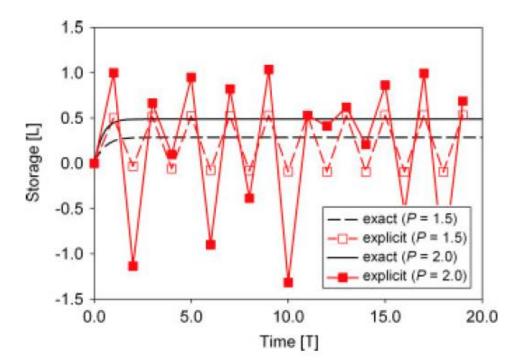
What is actually done in practice?

HYDROLOGICAL PROCESSES Hydrol. Process. 25, 661–670 (2011) Published online 16 November 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/hyp.7899

Numerical troubles in conceptual hydrology: Approximations, absurdities and impact on hypothesis testing

Dmitri Kavetski¹* and Martyn P. Clark²

 ¹ Environmental Engineering, University of Newcastle, Callaghan, NSW, Australia
 ² Research Applications Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO, USA


*Correspondence to: Dmitri Kavetski, Environmental Engineering, University of Newcastle, Callaghan, NSW, Australia. E-mail: dmitri.kavetski@newcastle.edu.au

Why Worry about Numerics Given so Many Other Problems?

Hydrologists often face sources of uncertainty that dwarf those normally encountered in many engineering and scientific disciplines. While a structural engineer designing a wall of a building can subject multiple bricks to repeated strength tests and simulate the full non-linear behaviour of individual bricks, joints and reinforcing bars using finiteelement models applied at the scale of millimetres, we as hydrologists often represent highly heterogeneous catchment systems, which may include complex stream networks, preferential flowpaths, varied vegetation, land use and geology, using highly conceptualized lumped models. Moreover, we often force these models with rainfall data from a single, daily recording gauge well outside of the catchment. Given the simplicity of our models, does it really matter how they are implemented?

Surprisingly common model implementation...

```
Srz = Srz_ini ! initialize store
DO i = 1, n ! loop over time steps
! calculate outflow using parameters
outflow(i) = b * exp(k * Srz)
! update storage
Srz = Srz + inflow(i) - outflow(i)
END DO
```


• The model state equations can be written as

$$\frac{\mathrm{d}\mathbf{S}}{\mathrm{d}t} = \mathbf{g}(\mathbf{S}, t)$$

• The <u>exact solution</u> of the average flux over the interval t^n (start of the time step) to t^{n+1} (end of the time step) is

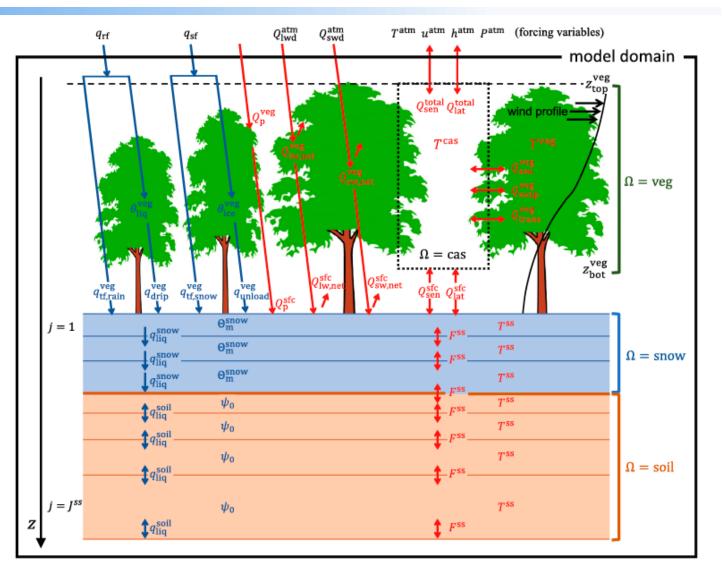
$$\overline{\mathbf{g}}^{n \to n+1} = \frac{1}{\Delta t} \int_{t^n}^{t^{n+1}} \left(\mathbf{g}(\mathbf{S}, \varsigma), \varsigma \right) \mathbf{d}\varsigma$$

- The exact solution is computationally expensive, so approximations to the exact solution are used
- The approximation controls the stability, accuracy, smoothness, and efficiency of the solution
- Given <u>an estimate</u> of the average flux, the model state variables can be updated as

$$\mathbf{S}(t^{n+1}) = \mathbf{S}(t^n) + \Delta t \overline{\mathbf{g}}^{n \to n+1}$$

 Note the separation of the physics from the numerical solution – hydrologists can "worry" about g(·) and numerical analysts can "worry" about how to obtain S.

Build complex models "from the inside out"



> A general problem formulation:

Sub-domains	
$\Omega = cas$ $\Omega = veg$ $\Omega = snow$	(canopy air space) (vegetation canopy) (snow)
$\Omega = \text{soil}$ State equations $\frac{\partial H^{\Omega}}{\partial t} = -\frac{\partial F^{\Omega}}{\partial z} + $	(soil) $\mathcal{F}_{\mathrm{sink}}^{\Omega}, \ \Omega = cas, veg, snow, soil$
$\frac{\partial \Theta_m^{\Omega}}{\partial t} = -\frac{\partial q_{\rm ice}^{\Omega}}{\partial z} -$	$-\frac{\partial q_{\text{liq}}^{\Omega}}{\partial z} + \mathcal{M}_{\text{sink}}^{\Omega}, \Omega = veg, snow, soil$

Separate the parameterization of physical processes from their numerical solution

- Given a model state vector, calculate the fluxes and the derivatives of the fluxes with respect to the relevant state variables
- □ Enables experimenting with alternative numerical solution methods (e.g., 3rd party solvers, new numerical solutions)

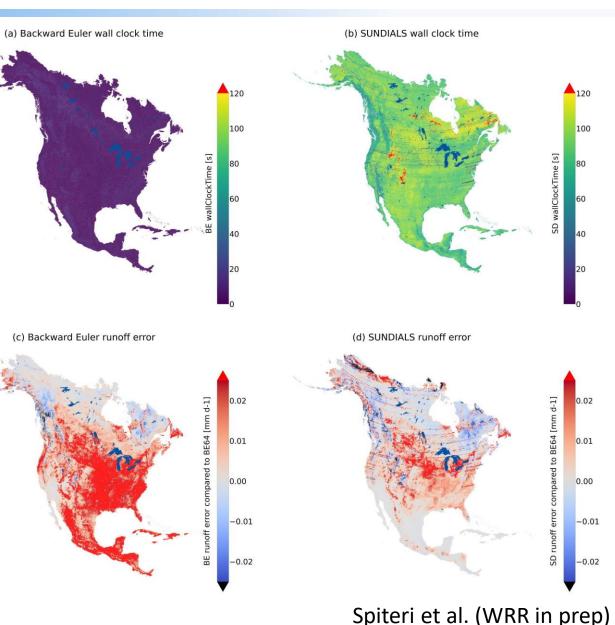
Clark et al. (JHM 2021)

Robust numerical solutions

Separate the physical representations from their numerical solution

- □ Use of industry-standard solvers (SUNDIALS)
- Take advantage of decades of progress in numerical analysis

The common numerical solution strategies in land models are quite different than the industry standard


- □ Land models typically use Backward Euler, taking a step as large as possible (typically the entire length of the data window) can require many iterations and can have large error
- □ SUNDIALS uses variable-order variable-stepsize methods, taking steps that are as large as possible while respecting error tolerances

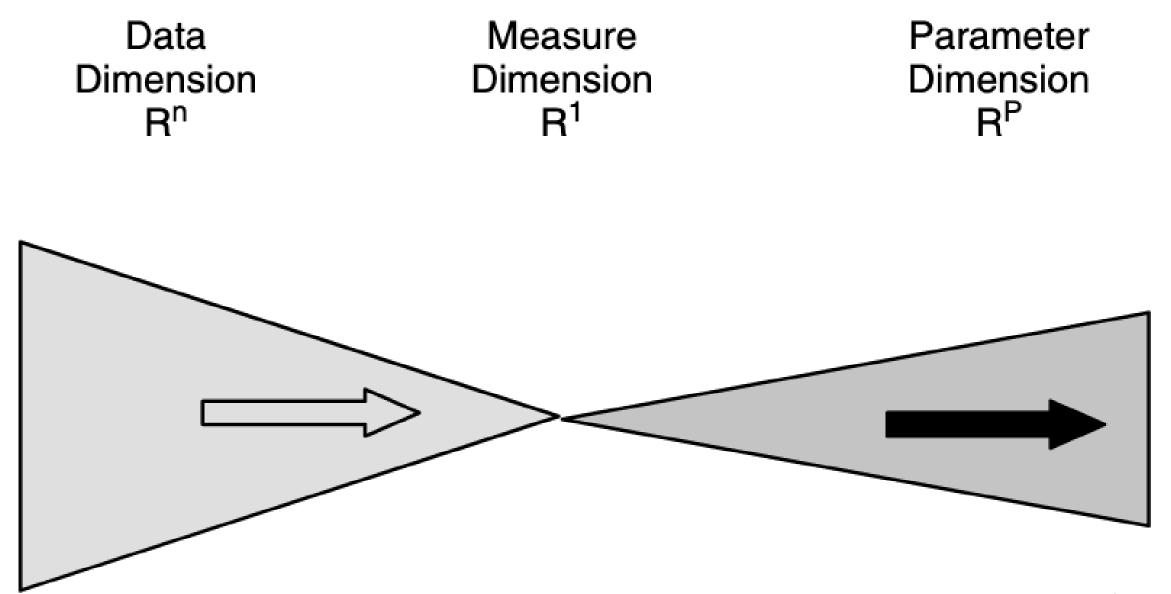
> Solving all equations simultaneously is a blunt instrument

- □ Different processes "act" on different time scales
- □ Need controlled operator splitting methods that take advantage of the unique aspects of the problem (link to model design)

The use of more advanced numerical solvers means computational hot spots change over time

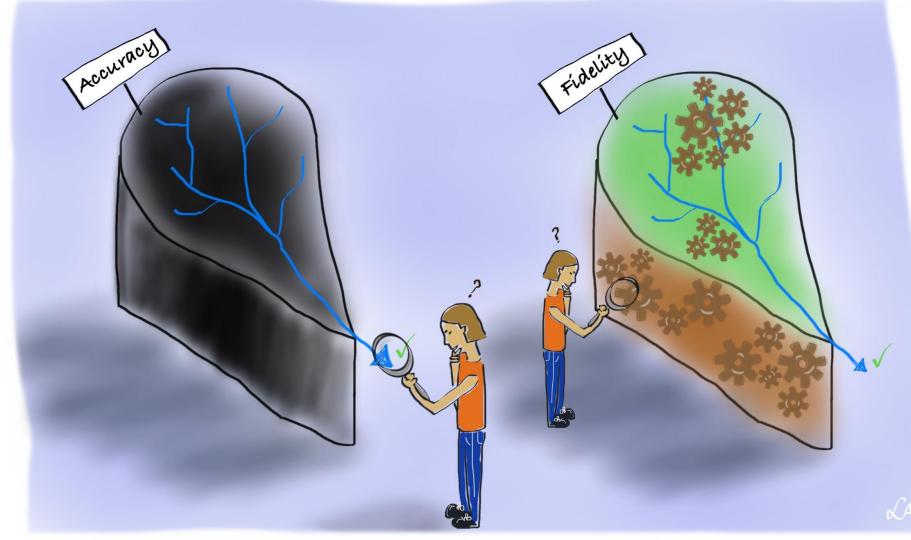
- In "standard" parallelization methods the spatial decomposition is constant in time
- Need more agile parallelization methods to address the temporal variability in computational hot spots

Problems with hydrological models



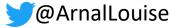
- Cumbersome and non-reproducible model workflows
- Unwieldy model structures
- Poor numerical implementation
- Statistically-oriented parameter estimation methods
- Weak model evaluation methods

The classical approach to model evaluation



Gupta et al., HP 2008

The quest for "fidelious" models



Accuracy describes discrepancies between model simulations and observations

Fidelity describes the extent a model faithfully represents the dominant processes in the region where it is applied.

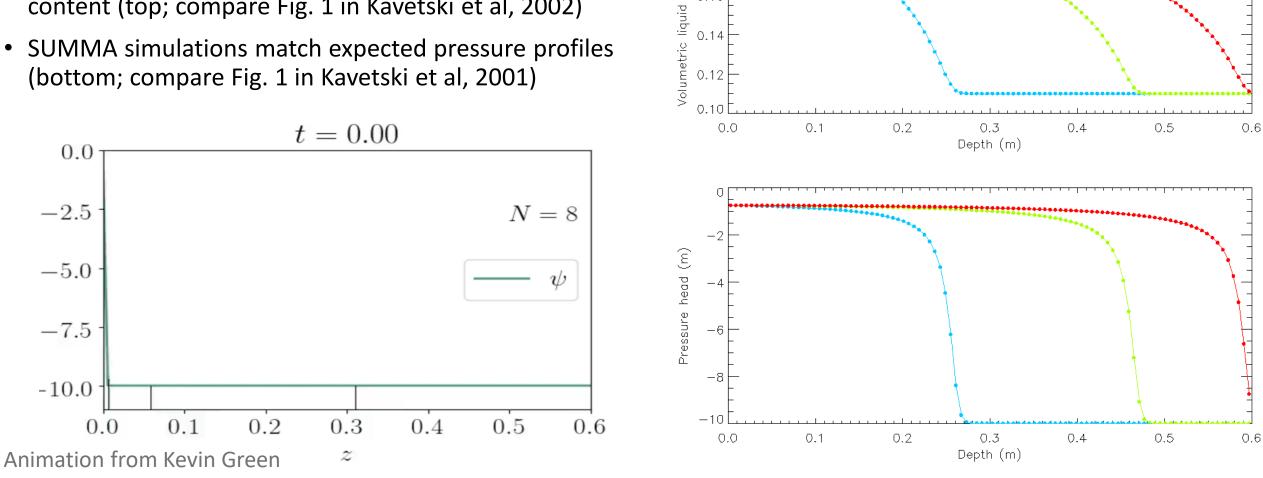
Accuracy is a necessary (yet not sufficient) condition for fidelity.

Just for fun: <u>https://uofs-comphyd.github.io/blog/fidelious</u>

Problems with hydrological models

- Cumbersome and non-reproducible model workflows
- Unwieldy model structures
- Poor numerical implementation
- Statistically-oriented parameter estimation methods
- Weak model evaluation methods and weak theoretical underpinnings

Laugh tests for land models

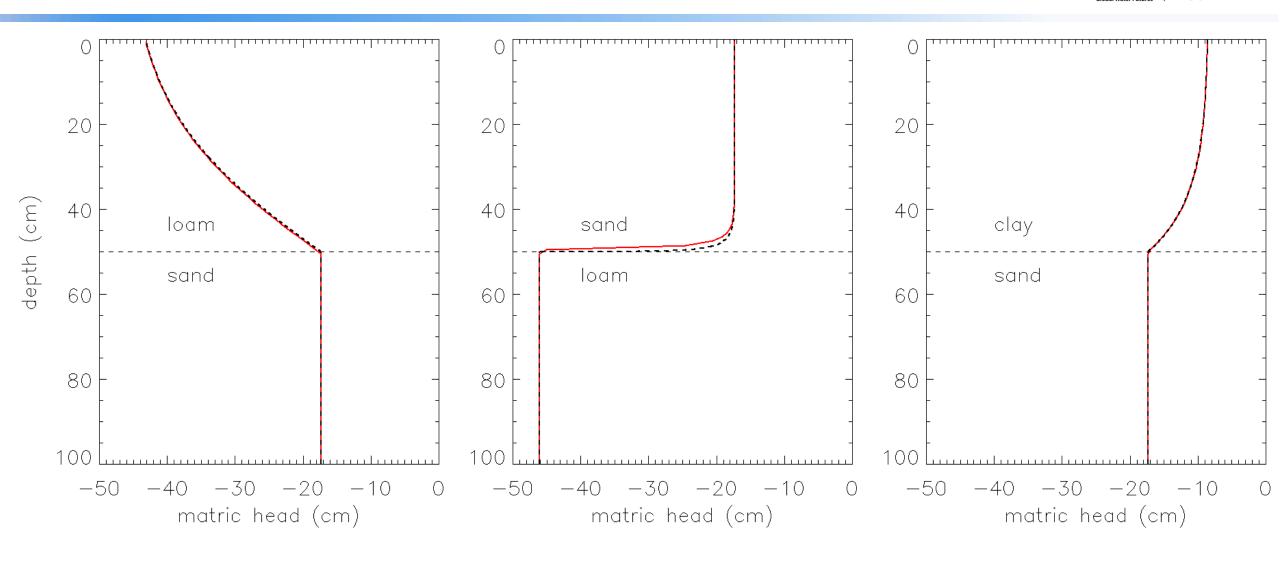

Laugh tests

- Also known as synthetic test cases or functional unit tests
- Evaluate the implementation of the model equations, including impacts of numerical approximations
- Considered "laugh tests" because they provide the most rudimentary test of model capabilities
- If a model fails a laugh test, then it is difficult to seriously consider the use of the model for its intended applications

Laugh test: Infiltration into dry soil

- Mixed form of Richards equation (Celia et al., 1990)
- Blue/green/red = SUMMA outputs at different times
- SUMMA simulations match expected volumetric water content (top; compare Fig. 1 in Kavetski et al, 2002)
- SUMMA simulations match expected pressure profiles (bottom; compare Fig. 1 in Kavetski et al, 2001)

0.18


0.16

0.14

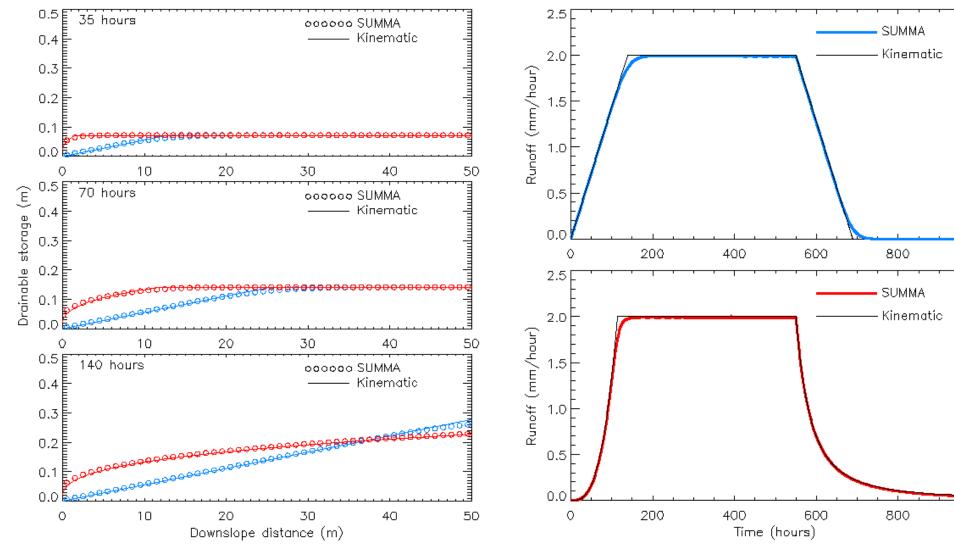
0.12

water


Laugh test: Steady-state flux in a layered soil profile Modelling

- Analytical solution of pressure head profile in layered soil (eq. 14 in Vanderborght et al, 2005)
- SUMMA simulations (red) closely resemble analytical solution (black)

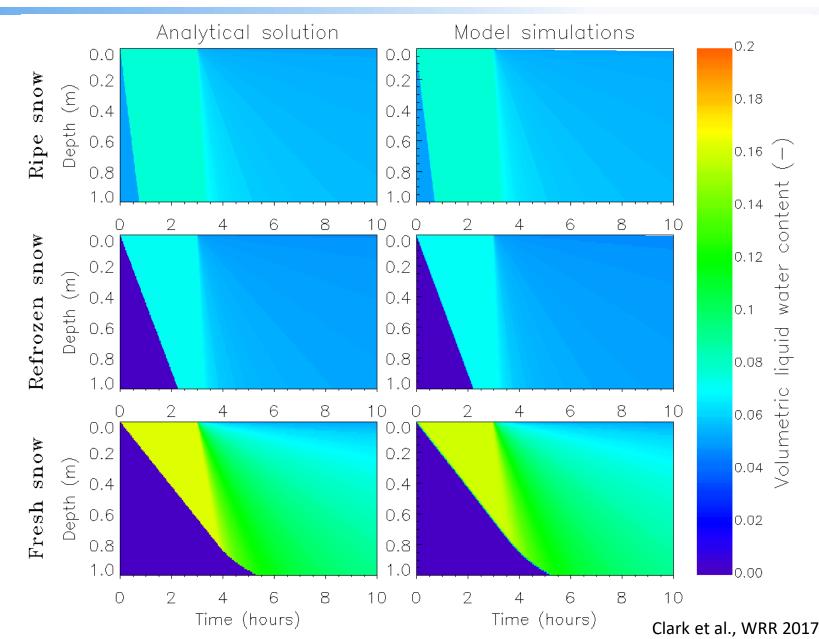
Laugh test: Lateral flow on a hillslope


- Flow through uniform soil for a plane with constant slope (Wigmosta & Lettenmaier, 1999)
- Blue: linear transmissivity function Red: power law transmissivity (n=3)

Laugh test: Lateral flow on a hillslope

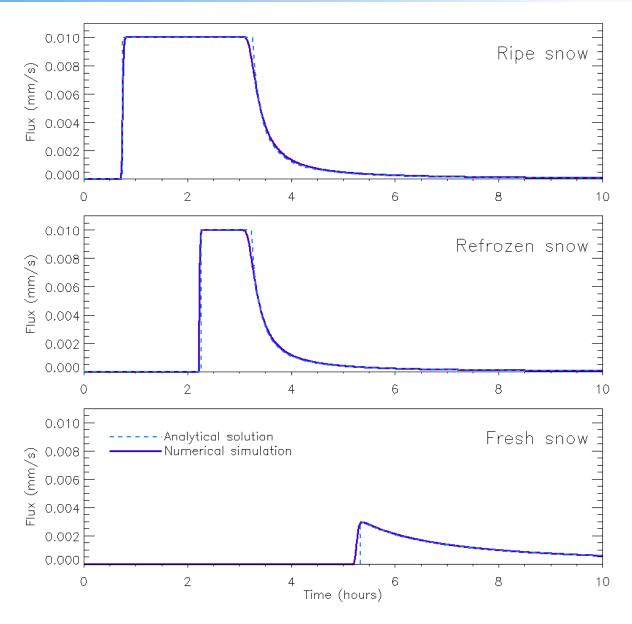
1000

1000


SUMMA closely resembles analytical solution for storage

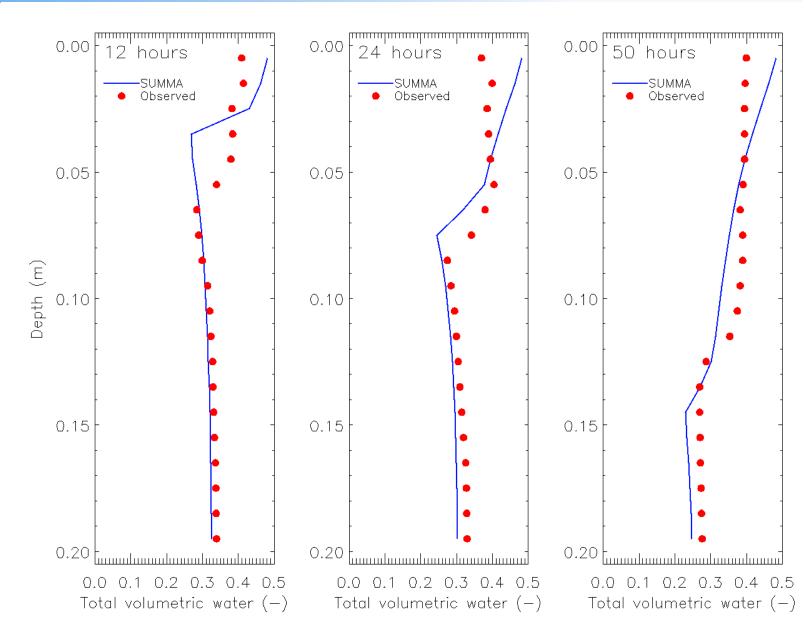
SUMMA closely resembles analytical solution for runoff

Laugh test: Water movement through snow


- Originally based on numerical experiments from Colbeck (1976): Rainfall for duration of three hours on a one-meter snowpack; different snowpack initial conditions
- Analytical solutions completed to provide estimates of volumetric liquid water content at every point in space and time
- Useful to evaluate coupled hydrological and thermodynamic processes in snow
- Close correspondence between numerical and analytical solutions.

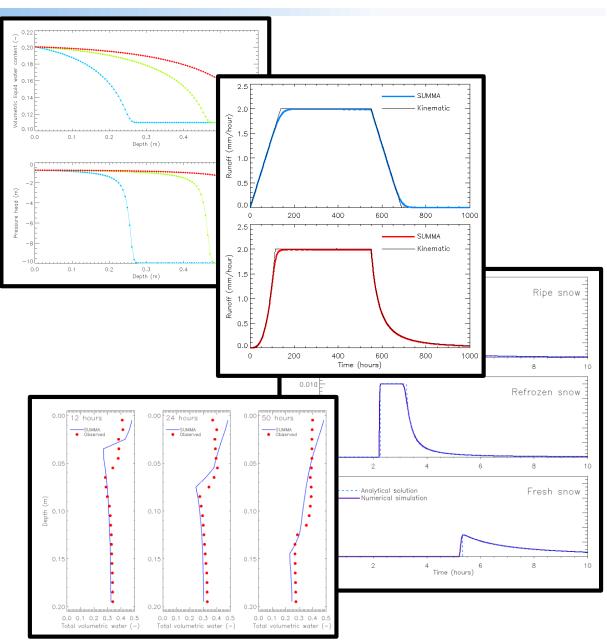
Laugh test: Water movement through snow

- Originally based on numerical experiments from Colbeck (1976): Rainfall for duration of three hours on a one-meter snowpack; different snowpack initial conditions
- Analytical solutions completed to provide estimates of volumetric liquid water content at every point in space and time
- Useful to evaluate coupled hydrological and thermodynamic processes in snow
- Close correspondence between numerical and analytical solutions.

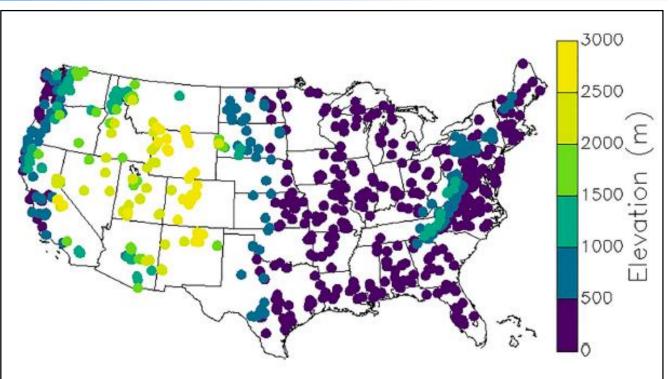


Clark et al., WRR 2017

Laugh test: Cryosuction

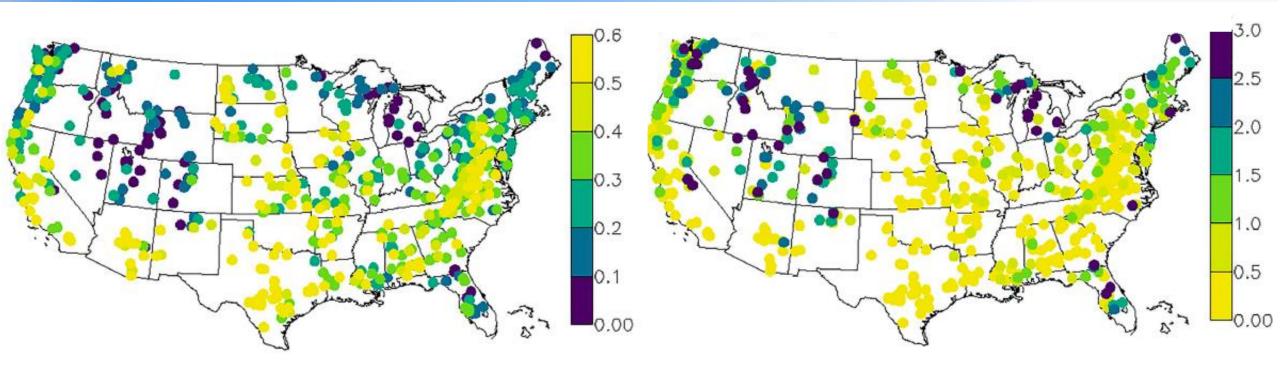

- Laboratory observations of cryosuction: soil columns with vertically constant initial water content were subjected to cooling from above for different time periods (Mizoguchi, 1990)
- Cryosuction: Freezing sets up negative pressure gradients and causes migration of water to the freezing front
- SUMMA simulations show the general effect of cryosuction processes
- As with other models, SUMMA deviates somewhat from observations (here we only expect to mimic the cryosuction behaviour)

Laugh tests: Summary


- Three different laugh tests (functional unit tests):
 - Compare to simulations from other papers
 - Compare to analytical solutions
 - Compare to lab experiments
- Synthetic test cases (functional unit tests are considered "laugh tests" because they provide the most rudimentary test of model capabilities.
 - □ If a model fails a laugh test, then it is difficult to seriously consider the use of the model for its intended applications
- Laugh tests evaluate the implementation of the model equations, including impacts of numerical approximations

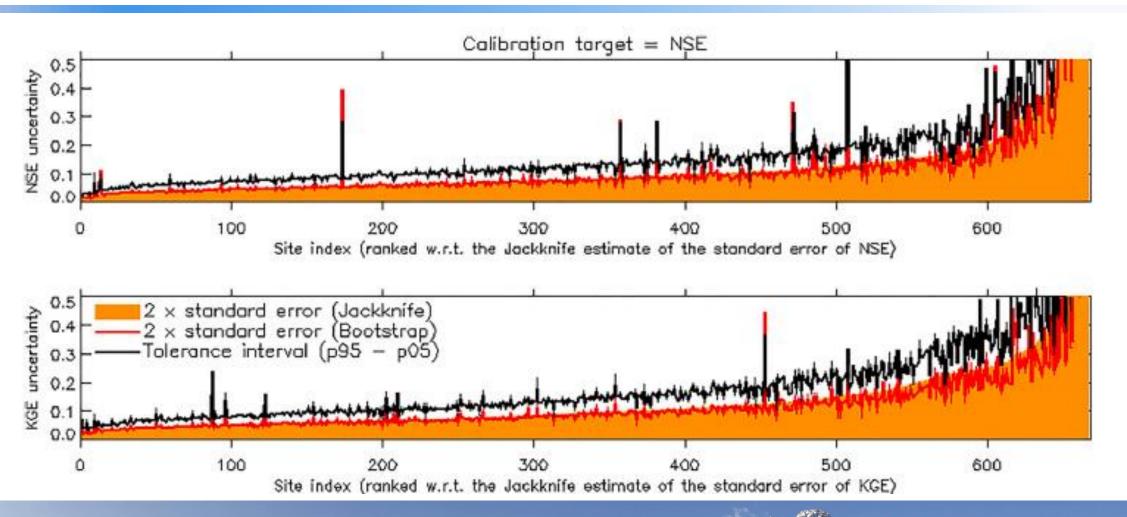
Sampling uncertainty in performance metrics

- Large sample analysis of CAMELS catchments
 - □ VIC simulations from Mizukami et al. (HESS 2019)
 - □ VIC calibrated using DDS by maximizing the \widehat{NSE} and \widehat{KGE} performance metrics (separate calibrations for each basin)
- > Quantify the influence of individual data points
 - Rank values of squared errors for all time steps
 - □ Calculate influence of *k* largest errors on the sum of squared errors
- > Quantify uncertainties in the \widehat{NSE} and \widehat{KGE} metrics
 - □ Non-overlapping block sampling
 - Jackknife estimates of standard error
 - Bootstrap estimates of standard error and tolerance intervals
- Quantify the standard error in the bootstrap tolerance intervals
 - Jackknife-after-bootstrap



Location and mean elevation of catchments in the CAMELS dataset

Contribution of a subset of days to the \widehat{MSE} estimate


Fraction of the \widehat{MSE} estimate contributed by 10 days with the highest error

Percentage of days that contribute 50% of the \widehat{MSE} estimate

Jackknife and bootstrap estimates of sampling uncertainty

Standard error in bootstrap tolerance intervals

Weak theory

@AGU_PUBLICATIONS

Water Resources Research

COMMENTARY

10.1002/2015WR017910

Key Points:

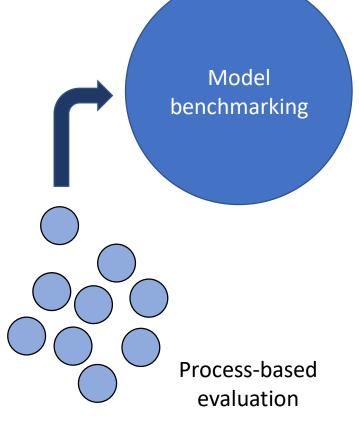
We seek to increase the physical realism of hydrologic models through better way existing theory
We seek to improve the way models are used to integrate and evaluate different process explanations
We define a set of key issues to address that will help narrow the gap between theory and models

Correspondence to:

Martyn P. Clark, mclark@ucar.edu

Citation:

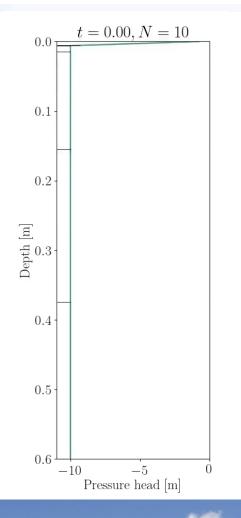
Clark, M. P., et al. (2016), Improving the theoretical underpinnings of processbased hydrologic models, *Water Resour. Res.*, *52*, 2350–2365, doi:10.1002/2015WR017910.


Received 29 JUL 2015 Accepted 28 JAN 2016 Accepted article online 2 FEB 2016 Published online 11 MAR 2016

Improving the theoretical underpinnings of process-based hydrologic models

Martyn P. Clark¹, Bettina Schaefli^{2,3}, Stanislaus J. Schymanski⁴, Luis Samaniego⁵, Charles H. Luce⁶, Bethanna M. Jackson⁷, Jim E. Freer⁸, Jeffrey R. Arnold⁹, R. Dan Moore¹⁰, Erkan Istanbulluoglu¹¹, and Serena Ceola¹²

¹National Center for Atmospheric Research, Research Applications Laboratory, Boulder, Colorado, USA, ²School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, ³Now at Faculty of Geosciences and Environment, University of Lausanne, Switzerland, ⁴Department of Environmental Systems Science, Swiss Federal Institute of Technology, Zurich, Switzerland, ⁵UFZ-Helmholtz Centre for Environmental Research, CHS, Leipzig, Germany, ⁶Research and Development, USDA Forest Service, Boise, Idaho, USA, ⁷School of Geography, Environment and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand, ⁸School of Geographical Sciences, University of Bristol, Bristol, UK, ⁹US Army Corps of Engineers, IWR|JISAO, Seattle, Washington, USA, ¹⁰Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada, ¹¹College of Engineering, Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA, ¹²DICAM, Università di Bologna, Bologna, Italy


Abstract In this Commentary, we argue that it is possible to improve the physical realism of hydrologic models by making better use of existing hydrologic theory. We address the following questions: (1) what are some key elements of current hydrologic theory; (2) how can those elements best be incorporated where they may be missing in current models; and (3) how can we evaluate competing hydrologic theories across scales and locations? We propose that hydrologic science would benefit from a model-based community synthesis effort to reframe, integrate, and evaluate different explanations of hydrologic behavior, and provide a controlled avenue to find where understanding falls short.

Summary and outlook

- Working to develop <u>numerically robust</u> terrestrial system models that faithfully represent the dominant physical processes across continental domains
 - ➢ Flexible model design
 - Robust numerical solutions
 - Agile parallelization strategies
- Model agnostic philosophy
 - Interested in a <u>terrestrial systems modelling community of practice</u> in order to more effectively share code and concepts across different model development groups (nextGen NWM)
 - To achieve numerically robust continental-domain models, there is a need for us to come together and think more about the interconnections between model design, numerical solvers, and parallelization strategies across multiple model structures

Questions?