Modelling groundwater at the British mainland scale - so far so good? A summary of the current progress and the challenges to come

Andrew Hughes and the Hydro-JULES sub-surface team

UK Centre for Ecology & Hydrology

Heteroaeneitv

Questions...

...make the modelling work go round!

We have two main ones:

- How can an integrated approach improve the simulation of major flooding events such as the 2013/4 floods?
- How can a holistic approach be undertaken to assess water resources under drought conditions?

British mainland

- Geology model providing basis for conceptualisation, parameterisation and groundwater flow model geometry
- Conceptualisation of groundwater flow 14 units identified and detailed work on characterising them ongoing
- Parameterisation Bulk parametrisation undertaken.
 chalk work ongoing / investigating transferability to other aquifer units
- Unsaturated zone processes metamodeling approach
- Groundwater flow modelling MODFLOW6

Defined ¹⁴ ydrostratigraphic units:

1	Quaternary
2	Neogene and Palaeogene
3	Chalk
4	Upper Greensand to Lower Greensand
5	Wealden
6	Purbeck Group to Ampthill Clay Formation
7	Corallian Group
8	Oxford Clay
9	Great and Inferior Oolite groups (mid-Jurassic)
10	Lias Group
11	Mercia Mudstone Group
12	Sherwood Sandstone Group
13	Permo-Triassic
14	Carboniferous
15	Devonian
16	Silurian, Ordovician, Cambrian
17	Precambrian & Igneous

Most productive aquifers

UK Centre for Ecology & Hydrology | Hydro-JULES productive aquifers or unproductive

Testing of MODFLOW 6 for BM mainland: Parameterisation

Surface bedrock geology

Regional groundwater conceptual models

Improving the geological representation: 3D framework model

1:625,000 scale mapping

Newell 2019

Geological units with depth

depth = 0 m

9

Hydrostratigraphic units with depth

depth = 0 m

Hydrostratigraphic units and Transmissivity distribution

Hydrostratigraphic units and borehole locations

Transmissivity distribution for each hydrostratigraphic unit

Next steps: Update parameterisation of the Chalk

12

Class	Colour	Description	Hydrogeological complexity
А		Bedrock at surface	Low
В		Bedrock beneath a high-permeability superficial unit	Low
С		Bedrock beneath a low-permeability superficial unit	Low
D		Bedrock covered by single low- and high- permeability units in superposition	Moderate
E		Multiple low- and high-permeability superficial units in superposition above bedrock AND / OR complex and unpredictable geometry.	High

Improving the geological representation: Test 3D geology on a small area

Improving the geological representation: Geological averaging onto the model grid

- Calculate effective hydrogeological properties for each model cell
- Calculate a weighted mean in x, y, z for each model cell
- harmonic mean of groups of cells along the flow direction – preserves properties with lower values
- arithmetic mean of groups of cells perpendicular to the flow direction

 preserves properties with higher values

Improving the geological representation: Test 3D geology on a small area: Marlborough and Berkshire Downs, South-west Chilterns

Set-up otherwise unchanged from UK mainland model: -grid (1 km) -rivers -recharge

Effect of geological averaging on steady state hydraulic head

Surface properties

Equivalent hydrogeological properties

ID: 199, WINDPUMP MANOR FARM, RMSE = 68.8, 68.8, 68.8, 68.7, 80.1

ID: 168, SHEEPWASH OBH, RMSE = 36.7, 36.7, 36.7, 36.7, 39.7

- Unstructured DISU grid
- Horizontal resolution: 1000 m, 500 m
- Vertical resolution: 25 m, 25 m, 50 m, 100 m, 150 m, 150 m
- 14 Hydrostratigraphic units
- Top based on the 50m DTM
- 1,467,148 active nodes

Marco Bianchi

Boundary conditions

- Coastline: CHD package
- Rivers: RIV/SFR package
- Recharge: RCH package
- Abstractions: WEL package

Hydraulic conductivity

Steady state simulation

Next steps

- Model calibration
- Observed groundwater heads
- Compare the simulated and observed heads and river flows for different river catchments and geological units
- Seasonality and extremes
- Integration into the Hydro-JULES framework
- MODFLOW 6 integration into the Hydro-JULES modelling framework
- British Mainland model will be an example for an integrated model
- Integrated groundwater surface water assessment for flooding and drought

UK Centre for Ecology & Hydrology | Hydro-JULES

If water table is disconnected from land surface:

Modelling groundwater at the British mainland scale - so far so good? A summary of the current progress and the challenges to come

Andrew Hughes and the Hydro-JULES sub-surface team

UK Centre for Ecology & Hydrology

